Low cost, non invasive, Continuous Glucose Monitoring utilizing Raman spectroscopy

A high quality, low cost, non invasive Continuous Glucose Monitoring (CGM) based mainly on Raman spectroscopy, is presented. In addition a number of sensors provide information about patient’s context. The CGM re-calibrates itself automatically.

Designing non-invasive continuous glucose monitoring (CGM) is an incredibly complex problem that presents a number of challenging medical and technological hurdles. It is told that around 70 companies tried to bring non-invasive glucose monitoring devices to the market without any success.

Quality in our CGM proposal comes from the number of technologies used to increase measurement precision. The understanding of the biological operating context enables to accurately predict glucose values.

More information here: glucose_monitor

Analysing eyes’ biomarkers at home with passive infrared radiation.

Currently there is no portable device that can check diseases of the aging eye such as: Glaucoma, age-related macular degeneration, Diabetic retinopathy, Alzheimer’s Disease, Cataract, clinically significant macular edema, keratoconjunctivitis sicca (dry eye disorder), Sjogren’s syndrome, retinal hard exudates, ocular hypertension, uveitis.

We propose a portable device which when placed before one eye but without any physical contact, analyzes its natural infrared spectrum in order to detect molecules that reveal a potential medical condition. If a biomarker is detected, the device asks to the user to consult a medical doctor, with an indication about urgency but without disclosing any medical information. On contrary the doctor can securely access a wealth of information without needing a dedicated device.

The medical doctor proposes this tool to the patient, and is constantly in control of the device and the relation she has with her patient.

More information here: passive_eye_care

Mesosphere light scattering as Cell tower substitute.

Modern wireless technology can’t transmit energy and information with a good enough SNR, over 80km and over earth curve, in portable low cost devices with current regulations.

We propose a very different approach based on astronomy technology, where a laser emits light vertically, generates a luminous dot at high altitude (similar to astronomy’s guidestar) and this light is detected at very long distance. By modulating the luminosity of this guidestar, it is possible to transmit information. This technology works even if the sky is cloudy and in daylight.

There is no need to build any infrastructure network. Each cell in a field can access the base station even at 80km. The cost per field station is less than $9,000. Field stations can be moved at will.

More information here: base_station_for_deserts