English

Articles written in English

Scientists in South-West of Germany, have investigated the associations of serum concentration of insulin-like growth factor 1 (IGF1) with prognosis of ALS in their region ALS registry in a case-control and cohort study, respectively.

Their study showed a clear association of low serum IGF-1 concentration with the prognosis of ALS, suggesting that higher IGF-1 concentration could increase survival.

There is growing evidence that a disturbed energy metabolism in ALS could play a pathogenic role. Data from Swabia's ALS registry showed a possible positive association of body mass index (BMI) with ALS decades before the clinical manifestation of ALS. In the ALS cases, there was a sharp kink in BMI trajectories shortly before onset of ALS, and greater weight loss was associated with a worse prognosis.

Insulin-like growth factor 1 (IGF-1) is a pluripotent growth factor with multiple functions in the peripheral and central nervous system. It supports neuronal survival and axon growth. IGF-1 led to increased survival of ALS patients in most but not all studies. It has also been the subject of several positive clinical trials, but it has undesired side effects. However results of a recent trial on IGF-1 in the treatment of spinal and bulbar muscular atrophy (SBMA), a rare motoneuron disease of the peripheral muscle with slow progression, did not improve muscle strength or function20.

The objective of this study was to analyze the associations of serum IGF-1 concentrations with the risk of ALS in a population-based case-control study. Furthermore, they investigated the association of IGF-1 serum concentration with prognosis of ALS in a cohort-design in ALS-cases only.

The ALS registry Swabia is a population-based clinical-epidemiological registry with the aim to collect data on all newly diag-nosed ALS cases in Swabia, a defined geographic region with approximately 8.4 million inhabitants in the South-West of Germany.

In this population-based case-control study in Southern Germany, serum IGF-1 concentrations were not associated with risk of ALS. In the cohort of ALS patients, however, they found evidence for an inverse association between high serum IGF-1 concentrations and overall survival. their results in the ALS cohort concerning prognosis are in line with observations of others.

Their observation that higher IGF-1 concentration is associated with longer survival is consistent with experimental research, showing that IGF-1 acts as a mitochondrial protector in the ALS cell and mouse model.

Multiple mechanisms elicited by IGF-1 might account for the observed increased survival in patients with higher circulating IGF-1. IGF-1 displays high neurotrophic properties, which could protect motor neurons and increase survival in ALS25. IGF-1 has also anabolic actions on skeletal muscle, especially upon denerva-tion26, which might be beneficial in ALS. Since IGF-1 is also related to energy metabolism and body weight, their current findings are consistent with former observations concerning BMI and adipokines as well as the findings on retinol binding protein (RBP)4 and the prognosis of ALS.

However, the observed protective effect of higher IGF-1 was observed upon adjustment of BMI, suggesting that it is not fully mediated by BMI as marker for fat mass. Thus, the longer survival of patients with higher IGF-1 levels could be related to direct biological actions of IGF-1, to an overactivation of a protective GH-IGF-1 pathway or to altered IGF-1 levels in patients with a favorable metabolic status.

So very high values IGF-1 are associated with a better prognosis of ALS suggesting that biological functions related to IGF-1 could be involved in ALS survival.

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

Cancer develops when cells in the body acquire mutations that allow them to grow and divide quickly and uncontrollably. At some stage of the disease, these cancer cells develop the ability to spread throughout the body. This spreading process, called metastasis, is responsible for most cancer-related deaths in humans, yet there is no treatment targeting the metastasis process.

Numerous studies have examined human clinical samples and/or tumor-derived cell lines to discern the mechanisms of metastasis, and have identified specific genes as well as the role of the tumor micro-environment.

It should be noted that anecdotal reports suggest that metastases may occur under circumstances that would promote inflammation such as surgery (Tohme et al., 2017) or during an infection (Smith and Kang, 2013). The authors of the following study discovered that the proteins MYC and TWIST1 cause metastases by activating a transcription program in cancer cells which induces cytokines which in turn allow recruitment and polarization of macrophages.

enter image description here Liver cancer cells with high levels of MYC (red) and TWIST1 spreading into an infiltrated lung of macrophages (green) that have been converted to a tumor-friendly state. Image credit: Nia Adeniji (CC BY 4.0)

Myc is a proto-oncogene that is over-expressed in certain human cancers. When subjected to mutations or overexpression, it stimulates cell proliferation and behaves like an oncogene.

TWIST1 is a transcription factor which in humans is encoded by the TWIST1 gene and is involved in the metastasis process. Inactivation of Twist by small interfering RNAs or a chemotherapeutic approach has been demonstrated in vitro. Thymoquinone, which is isolated from Nigella sativa (black cumin), downregulates the transcription factor TWIST1.

However, to date, there are very few in vivo models in which the progression from non-metastatic cancer to metastatic cancer can be studied. The researchers therefore generated a new model of conditional transgenic mouse metastasis that has characteristics that are complementary to existing model systems. This model animal systematically develops hepatocellular carcinoma, or hepatocarcinoma.

It is the most common type of primary liver cancer in adults and the most common cause of death in people with cirrhosis Their new model has allowed them to study tumor-host interactions during malignant progression in an immunocompetent host. In their model, more than 90% of the mice predictably develop extrahepatic metastases. They believed that their model has general relevance for all human cancers and that it will be useful in developing new therapies that block cancer metastases.

In this animal model of metastasis, the researchers demonstrated that the expression of MYC and Twist1 is necessary to trigger metastasis. They discovered that MYC and Twist1 bind to promoters of the human and mouse Ccl2 and Il13 genes. MYC and Twist1 coordinate to regulate a set of cytokines, including Ccl2 and Il13, which are both necessary and sufficient to cause metastasis.

Their results suggest that MYC and Twist1 may contribute to metastases by a transcriptional induction mechanism of a cytokinoma which activates macrophages. They note that their observations are consistent with a multitude of reports that innate immunity contributes to metastasis.

They propose as a possible general explanation of their results that the overexpression of MYC and TWIST1 in a tumor, activates an embryonic program of activation of innate immune cells and of cellular invasion. Indeed MYC and TWIST1 cooperate during embryogenesis. These two transcription factors have also been shown to modulate inflammation transcriptionally during embryogenesis. The microenvironmental changes induced by inflammation are necessary to allow mesodermal cells to migrate to their destination.

Researchers suggest that personalized therapy that combines inhibition of CCL2 and IL13 is likely to be effective, and that stratification of patients by cytokine expression may help guide treatment.

Neutrophils are the immune system's first line of defense against infection and are generally thought to kill invading pathogens using two strategies: engulfing microbes and secreting antimicrobials. In 2004, a new function was identified: the formation of NET NETs are very fine filaments visible in scanning electron microscopy. The fibers are decorated with globular particles and grouped together to form more complex structures.

enter image description here Source: Max Planck institute for infection biology

NETs allow a high local concentration of antimicrobial components and bind, disarm and kill not only bacteria but also pathogenic fungi. In addition to their antimicrobial properties, NETs can serve as a physical barrier that prevents the further spread of pathogens.

NETs have been shown to form in blood vessels, particularly in the pulmonary capillaries and hepatic sinusoids. Intravascular NET formation is tightly controlled and regulated by platelets, which detect severe infection and then bind to neutrophils and activate them to form NET. Platelet-induced NET formation occurs within minutes and NET can then intercept circulating bacteria as they pass through the vessels.

NETs could however have a deleterious effect on the host, since the extracellular exposure of histone complexes could play a role during the development of many diseases.

The authors of a study published in Nature Immunology, have identified an intrinsic cellular program which modifies the proteome of neutrophils and causes the progressive loss of the granule content and the reduction of the formation capacity of NET.

https://www.ncbi.nlm.nih.gov/pubmed/31932813

It has long been recognized that multiple inflammatory processes in humans exhibit circadian periodicity, and experimental models have supported that not only the onset of inflammation, but also the severity of inflammatory events manifest diurnal oscillations. These events are often caused by activation of neutrophils and thrombosis, which in turn can be exacerbated in the presence of neutrophils or NET. Thus, the authors' results, which are obtained in the context of acute pulmonary inflammation, may extend to other inflammatory and thrombotic conditions.

Proteome changes are driven by CXCR2 and Bmal1. The diurnal changes in neutrophil transcription and migration are controlled by an intrinsic cellular mechanism, in which the expression of the chemokine Cxcl2 is regulated by the molecular clock protein Bmal1 and leads to the autonomic diurnal activation of neutrophil cells by signaling via CXCR2.

The intrinsic cellular program which modifies the proteome of neutrophils in the bloodstream, also causes the gradual loss of the granule content and the reduction of the NET formation capacity.

Changes in the proteome, granule content, and NET formation thus indicate a possible strategy for "disarming" neutrophils.

Saving neurons in Parkinson's disease

- Posted in English by

In recent years, researchers have speculated that certain neurons believed to be dead during neurodegenerative diseases are actually in a dormant state. Researchers led by Dr. C. Justin Lee, Dr. Hoon Ryu, and Dr. Sang Ryong Jeon, have reported that symptoms of Parkinson's disease appear when dopaminergic neurons become "nonfunctional" , long before they die.

Although neuronal death has so far been considered the obvious cause of Parkinson's disease, the study found that motor abnormalities begin at the earlier stage when dopaminergic neurons begin to be unable to synthesize dopamine.

"Everyone agrees with the conventional idea that neuronal death is the sole cause of Parkinson's disease. This hampers efforts to investigate other neuronal states, such as the influence that surrounding astrocytes can have "said Dr. C. Justin Lee.

He adds: "Neuronal death has ruled out any possibility of reversing the course of Parkinson's disease. But as it is now shown that dormant neurons can be awakened to resume their productive capacity, this discovery gives patients with Parkinson's disease hope for a cure. "

The appearance of reactive astrocytes is an important characteristic not only of Parkinson's disease, but also of many other brain diseases, including AD, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, brain damage traumatic and stroke. However, it was recognized that the role of these reactive astrocytes was limited to neuroinflammation or metabolic support. The study by Korean researchers suggests that the interaction between astrocytes and neurons via the powerful inhibitory gliotransmitter GABA, is a critical factor in the progression of Parkinson's disease. They confirmed that dormant dopaminergic neurons are alive and can be awakened by treatment with inhibitors of Monoamine oxidase B, which block the astrocytic synthesis of GABA.

Monoamine oxidase B (MAO-B) is an enzyme located in the outer mitochondrial membrane. It plays an important role in the catabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. This protein preferentially degrades benzylamine and phenylethylamine, and also dopamine

However, the results of several clinical trials have questioned the therapeutic efficacy of traditional irreversible MAO-B inhibitors such as selegiline and rasagiline. Long-term use of irreversible MAO-B inhibitors undesirably activates the compensatory mechanisms of GABA production.

Korean researchers recently developed a new class of Monoamine oxidase inhibitor, KDS2010, which effectively inhibits the astrocytic synthesis of GABA to completely save neurons, with minimal side effects in animal models of Alzheimer's disease. They believe that this new compound will also be effective in relieving parkinsonian motor symptoms in animal models as well as in patients with Parkinson's disease.

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

HDAC inhibitors has been proposed since some time for ALS. They have a long history of use in psychiatry and neurology as mood stabilizers and anti-epileptics. More recently they were being investigated as possible treatments for cancers, parasitic and inflammatory diseases.

Sodium valproate an HDAC inhibitor, had been tested for ALS in clinical trial, it was quite effective but there were severe side effects. Another trial will soon combine it with lithium.

A team [0] tested in-vitro several other HDAC inhibitor and found that two of them, SAHA, RGFP109, when combined with arimoclomol did reduce the loss of nuclear FUS (In ALS-FUS, FUS localizes in cell's cytosol instead of the nucleus, in a similar manner to TDP-43's behavior). They also found that HDAC inhibition rescued the DNA repair response in iPSC-derived motor neurons carrying the FUS P525L mutation.

They evaluated the ability of different classes of histonedeacetylase inhibitors to enable the heat shock response inmotor neurons, both alone and in combination with drugs that induce HSP expression constitutively or magnify induction in stressed cells (co-inducers)

It is still unknown if compounds with more substantial HDAC inhibitory activity will enhance the heat shock response, or the mechanisms regulating HSP expression.

[0] https://www.ncbi.nlm.nih.gov/pubmed/31900865

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

The formation of stress granules, which are large assemblies composed mainly of proteins and mRNA, have been reported under various stress conditions, such as starvation, osmotic, thermal and oxidative stresses, and are believed to be one of the means that cells use to adapt to cellular stress.

In addition, many neurodegenerative diseases are characterized by protein aggregates very similar to stress granules. This is the case for example for Alzheimer's disease but also for Parkinson's disease, Amyotrophic Lateral Sclerosis and others.

Indeed stress granules protect the cell from environmental stress, but under prolonged stress, they turn into abnormal aggregates, but the underlying molecular mechanism of the self-assembly process is poorly understood.

Cell starvation stress is common in cases of ALS, it can be found in situations like mutations (eg C9orf73) which require special efforts from the cellular protein quality system or when faced with insulin resistance which reduces the cellular supply of glucose. Acidification of the cellular extracellular medium (low pH) and concomitant intracellular alkalinization of the cytoplasm (high pH) are characteristics of cancer.

In this study, the authors show that under low pH conditions, imitating starvation cellular stress, the central part of TDP-43 which includes the two RRM motifs (TDP-43tRRM), undergoes a conformational change linked to the protonation of buried ionizable residues and develops into a metastable oligomeric assembly called low pH form '' or the L form ''.

enter image description here

The authors have thus shown that in the presence of acidification, even very weak, TDP-43tRRM folds completely and oligomerizes to form a "β form" rich in β sheets. The β form has an ordered and stable structure that resembles the amyloid fibrils that are found in Alzheimer's disease!

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

ALS has been linked by many scientists to an abnormal lipid metabolism and, in particular, to gangliosides and their ceramide-type precursors which are thought to be modulators of the progression of the disease. Interestingly, autoantibodies against specific gangliosides produce an inflammatory disease of the spinal motor neurons which is known as conduction multifocal motor neuropathy (Harschnitz et al., 2014).

Overall, there is substantial evidence of ganglioside dysfunction in neurodegenerative diseases, for example for ALS, Alzheimer's disease, Huntington's disease and Parkinson's disease.

enter image description here

The exact nature of the problems, however, appears to be variable in these different diseases; for example ganglioside concentrations are reduced in Parkinson's disease and Huntington's disease, but increased in Alzheimer's disease and there are two-way changes for ALS.

Glycan and polysaccharide are synonymous, however, in practice, the term glycan can also be used to refer to a glycoprotein, a glycolipid or a proteoglycan. Glycolipids are lipids with a carbohydrate linked by a glycosidic bond (covalent). Their role is to maintain the stability of the cell membrane and facilitate cell recognition, which is crucial for the immune response and in the connections that allow cells to connect to each other to form tissue.

Sphingolipidoses are a class of lipid storage disorders linked to the metabolism of sphingolipids (a glycolipid). Sphingolipids were discovered in brain extracts in the 1870s and were named after the mythological sphinx because of their enigmatic nature. These compounds play an important role in signal transduction and cell recognition. Sphingolipidosis, or disorders of sphingolipid metabolism, have a particular impact on neural tissue. The main diseases of these disorders are Niemann-Pick disease, Fabry disease, Krabbe disease, Gaucher disease, Tay-Sachs disease and metachromatic leukodystrophy.

There are simple sphingolipids, which include sphingoid bases and ceramides as well as complex sphingolipids.

Sceramides have been implicated in various medical conditions, including cancer, neurodegeneration, diabetes, microbial pathogenesis, obesity and inflammation. Ceramides induce insulin resistance in skeletal muscles, as well as induction of insulin resistance in many tissues. In the mitochondria, ceramide suppresses the electron transport chain and induces the production of reactive oxygen species.

Complex sphingolipids include Sphingomyelin which is found in the membranes of animal cells, particularly in the membranous myelin sheath which surrounds certain axons of nerve cells. They also include glycosphingolipids which can themselves be divided into cerebrosides, gangliosides and globosides.

Gangliosides have been shown to be very important molecules in immunology. Natural and semi-synthetic gangliosides are considered as possible therapies for neurodegenerative disorders. Gangliosides are present and concentrated on cell surfaces, where they present points of recognition for extracellular molecules or the surfaces of neighboring cells. They are mainly found in the nervous system.

A number of studies have implicated glycosyltransferases in the pathogenesis of neurodegenerative diseases, but it has been difficult to differentiate the cause of the effect. Scientists recently discovered [0] that mutations near the substrate binding site of the glycosyltransferase 8 domain containing 1 (GLT8D1) are associated with familial amyotrophic lateral sclerosis (ALS). The study authors demonstrated that mutations associated with ALS reduce the activity of the enzyme, suggesting a mechanism of loss of function that is an attractive therapeutic target. Their work shows that an isolated dysfunction of a glycosyltransferase is enough to cause degenerative diseases.

Several glycan-based therapies have been developed. In particular, glycosylation modulators that affect glycan uptake can be powerful tools for developing glycan-based therapies.

[0] Disrupted glycosylation of lipids and proteins isa cause of neurodegeneration. Tobias Moll, Pamela J. Shaw and Johnathan Cooper-Knock doi:10.1093/brain/awz358

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

Amyotrophic lateral sclerosis caused by mutations in the FUS gene is characterized by cytoplasmic FUS aggregates (FUS proteinopathy). Shelkovnikova et al. find that the antiviral immune response promotes FUS protein accumulation and its coalescence into persistent cytoplasmic assemblies. Viral infection can serve as a trigger of FUS proteinopathy in ALS.

enter image description here

Mutations in the FUS gene cause familial amyotrophic lateral sclerosis (ALS-FUS). In ALS-FUS, FUS-positive inclusions are detected in the cytoplasm of neurons and glia, a condition known as FUS proteinopathy. Mutant FUS incorporates into stress granules (SGs) and can spontaneously form cytoplasmic RNA granules in cultured cells.

However, it is unclear what can trigger the persistence of mutant FUS assemblies and lead to inclusion formation. Although FUS readily aggregates in the test tube, this is not the case in vivo, and available rodent models expressing mutant FUS do not develop FUS aggregates in the CNS. This is a very different behavior from mutated proteins like SOD1, C9orf72 or TDP-43. While those last three proteins can aggregate, the reason why they aggregate are different for each of them but are related to instability in their shape. FUS proteinopathy is different.

Epidemiological and clinical evidence for a connection between viral infection and ALS has been accumulating for decades (Celeste and Miller, 2018; Ravits, 2005; Vandenberghe et al., 2010). For example, it is known that individuals with a history of poliomyelitis have a higher risk of developing motor neuron disease later in life (Martyn et al., 1988). Similarly, patients infected with HIV or human T cell leukemia virus 1 develop neurological disorders resembling clinical features of ALS (Alfa- had and Nath, 2013). Indeed one of the multiple biological roles of TDP-43 (which is the cause of most ALS cases) is to mitigate HIV infections. Importantly, multiple viruses are able to induce SG assembly (McCormick and Khaperskyy, 2017; White and Lloyd, 2012).

In the current study, Tatyana A. Shelkovnikova and her colleagues show that the exposure to foreign double-stranded RNA (dsRNA), typical for some viral infections, is a potent inducer of persistent FUS-enriched assemblies in the cytoplasm of cells expressing either exogenous or endogenous mutant FUS. Furthermore, they show that type I interferon (IFN), the central component of antiviral signaling, promotes accumulation of FUS protein. They propose that the antiviral immune response, with its profound effect on FUS levels and distribution, can serve as a trigger of FUS proteinopathy in ALS-FUS.

https://www.ncbi.nlm.nih.gov/pubmed/31875556

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

For therapies aimed at Alzheimer's disease, it seems obvious that an effective drug must act on the brain. But according to the results presented at the 12th conference of clinical trials on Alzheimer's disease, which was held from December 4 to 7 in San Diego, California, a therapy could also influence the brain without ever penetrating the blood-brain barrier.

Apabetalone is a small, orally administered molecule that was created by Resverlogix Corp. Researchers reported at the 12th Alzheimer's Clinical Trials Conference that apabetalone appears to slow cognitive decline, but only in those most affected and after one year of administration.

Apabetalone essentially blocks the association between BET and acetylated lysines, crushing the transcription of hundreds of genes. Previously, researchers had reported that BET proteins stimulate the expression of a myriad of genes involved in inflammation, lipid metabolism and vascular function, making apabetalone a candidate treatment for cardiovascular and other chronic diseases of aging.

Many genes targeted by apabetalone are found downstream of the tumor necrosis factor α (TNFα), a master regulator of inflammation. The results presented at the conference by Ewelina Kulikowski of Resverlogix, suggest that apabetalone could attenuate the inflammatory responses provoked by TNFα, soothe vascular inflammation - and perhaps even limit the chronic activation of glial cells on the other side of the blood-brain barrier.

The BETonMACE multicentre phase III trial was designed to determine whether apabetalone in combination with statins could decrease heart events compared to treatment with statins alone.

Participants in the trial had type 2 diabetes, acute coronary syndrome and low levels of high density lipoprotein (HDL). The trial continued for up to 250 cardiovascular events. Although the drug tended to reduce cardiovascular events, the effect did not reach statistical significance.

Of the 2,425 people enrolled in the trial, 469 people over the age of 70 participated in a cognitive sub-study, the Montreal Cognitive Assessment (MoCA). While the MoCA scores decreased slightly or remained stable in the treatment and placebo groups among participants in the two high MoCA groups, those with the lowest MoCA scores appeared to benefit from treatment.

Among the 97 participants in this subgroup, those taking apabetalone improved on average by three points on the test between the baseline and 27 months, while those on placebo, curiously, improved by 1 point . Researchers believe the drug alleviates cognitive impairment by targeting inflammation in the vascular system.

The idea that an inflamed vascular endothelium - particularly in the vessels that make up the blood-brain barrier, could damage brain health and decrease cognitive ability, confirms the results of previous studies.

Disturbances in glucose metabolism (insulin resistance and abnormal glucose tolerance) are frequently observed among ALS patients. In recent years, there has been growing interest in the elusive relationship between premorbid diabetes and ALS.

With regard to the risk of developing ALS, studies in European countries have demonstrated that premorbid type 2 diabetes protects people against ALS development. One exception was the study by Sun et al. , who found that premorbid type 2 diabetes increased the risk of ALS development in Asia (Taiwan, China). In addition, a 4 year delay in the onset of ALS was observed in ALS patients with premorbid type 2 diabetes.

The aforementioned literature demonstrated the distinctive effect of premorbid type 2 diabetes on ALS patients from Asia and Europe. The present study aims to provide evidence for the association between premorbid type 2 diabetes and ALS by evaluating the onset and prognostic value in our cohort of ALS patients.

Patients were recruited from the national referral Amyotrophic Lateral Sclerosis Clinic at the Department of Neurology, Peking University Third Hospital (PUTH), Beijing, between 1January 2013, and 31 December 2016. Among 1331 consecutive sporadic ALS patients, 100 (7. 5%) were labeled as ALS type 2 diabetes and 1231 were labeled as ALS control according to the presence or absence of premorbid type 2 diabetes

As in other studies, the authors found a 4. 4 year delay in the onset of ALS inpatients with premorbid type 2 diabetes after controlling for other ALS disease modifiers, including gender.

The prevalence of premorbid type 2 diabetes at base line in ALS patients was lower than the estimated rate among the Chinese population. The overall prevalence of premorbid type 2 diabetes at baseline among ALS patients was 100/1331¼7. 5%; however, the expected prevalence of type 2 diabetes in the general population (>18 years) in China is estimated to be over 11. 6% (95% CI, 11. 3% – 11. 8%). This observation also indicates a protective role of premorbid type 2 diabetes on ALS development. This result was consistent with what has been reported in other studies.

In this study, the mean age of onset of ALS symptoms was 52. 9 years (SD, 10. 2 years), which was lower than that reported in Japan (64. 8 years), Italy (64. 8 years), Europe (64. 4 years) and Germany (67. 0 years). The age of onset of Chinese patients with ALS is approximately a decade younger than that of European and Japanese patients with ALS.

It is noteworthy that the willingness to medically treat younger patients is much stronger than that of elderly patients. Since ALS is a relatively rare disease, ALS might be under recognized in older people because being weak or wasted may be regarded as a normal part of aging or because multiple medical problems may ALS diagnostic difficult. This may create bias.

A clear molecular explanation of the relationship between type 2 diabetes and ALS remains a challenge. Recently, several radiographic and molecular studies have demonstrated that structural and functional alterations in the hypothalamic melanocortin system are frequently observed at the preclinical stage of ALS patients. The essential role of melanocortins lies in the regulation of body weight and appetite. The hypothalamic melanocortin pathway is a critical center for monitoring, processing, and responding to peripheral signals, including hormones, such as ghrelin, leptin, and insulin.

In ALS patients, these alterations in the structure and function of the hypothalamic melanocortin system provide a mechanistic explanation for the abnormalities in food intake and metabolism observed inpatients with ALS. Increasingly, behavior related changes have been associated with improved survival. Similarly, these preclinical alterations in the hypothalamic melanocortin pathway, as compensatory changes for ALS development, could also be a potential explanation for ALS patients with insulin resistance and type 2 diabetes. High levels of glucose could reduce the damage to motoneurons caused by hypermetabolism in the preclinical and early stages of ALS, while in the middle and late stages of ALS, when the melanocortin system is in a decompensatory period, insulin resistance and type 2 diabetes have no beneficial effect on the progression or survival of ALS patients.

In Alzheimer disease, for example, clinical and epidemiological studies have shown that the risk of Alzheimer disease was almost doubled in type 2 diabetes patients compared to the general population. Insulin deficiency and insulin resistance, core features of type 1 diabetes and type 2 diabetes, were also observed in the brains of Alzheimer disease patients. Thus, researchers proposed the term “type 3 diabetes”, which reflects the fact that Alzheimer disease represents a form of diabetes that selectively involves the brain and has molecular and biochemical features that overlap with both type 1 diabetes and type 2 diabetes. However, the question of whether the observed insulin resistance is a cause or consequence of neuro-degeneration in Alzheimer disease remains open.

Finally, the anti type 2 diabetes drugs metformin and pioglitazone, which have been proven to be neuroprotective in Alzheimer disease and other neurodegenerative diseases, have unexpectedly failed to show beneficial effects on the progression or survival of ALS patients. It was found that, at later time points, the metformin induced trophic effects may have been overshadowed by advancing and aggressive SOD1G93A pathology and potentially negative drug effects. The cause of pioglitazone’s failed clinical translation remains elusive. It was even suggested that suboptimal glycemic control may be beneficial in ALS.

Please, to help us continue to provide valuable information: