Qu'est-ce que la chimioprévention

La chimioprévention (également la chimioprophylaxie) fait référence à l'administration d'un médicament dans le but de prévenir une maladie ou une infection. Des antibiotiques, par exemple, peuvent être administrés à des patients présentant des troubles du système immunitaire afin de prévenir les infections bactériennes (en particulier les infections opportunistes). Il peut également s'agir d'administrer de l'héparine pour prévenir la thrombose veineuse profonde chez les patients hospitalisés.

Comment l'incidence du cancer du poumon?

Le cancer du poumon est la principale cause de décès par cancer aux États-Unis et en Europe. Parmi les autres agents cancérigènes, citons l'amiante et les matières radioactives. Par conséquent, la prévention du tabagisme est primordiale pour la prévention du cancer du poumon. Les stratégies efficaces pour réduire l'incidence du cancer du poumon (au-delà du sevrage tabagique) font actuellement défaut.

Par exemple, le développement du cancer du poumon à cellules squameuses commence par un épithélium normal et progresse par l'hyperplasie, la métaplasie, la dysplasie (légère, modérée et grave) et le carcinome in situ. À ce jour, aucun biomarqueur intermédiaire n'a été validé pour l'interception du cancer du poumon, en partie en raison de l'absence de traitement éprouvé, et l'histologie est actuellement considérée comme le meilleur marqueur.

Quelles pistes pour la chimioprévention du cancer du poumon?

Les produits de la voie de l'acide arachidonique, en particulier les prostaglandines (PG), jouent un rôle essentiel dans la carcinogenèse pulmonaire et la chimioprévention. De grandes études épidémiologiques ont montré un lien entre l'utilisation régulière d'aspirine et la diminution du taux de certains cancers. Ces résultats ont conduit à un essai clinique montrant que l'iloprost oral (un analogue de la prostacycline) améliorait de manière significative la dysplasie endobronchique chez les anciens fumeurs. Des études supplémentaires portant sur le mécanisme chimio-préventif ont montré que les effets de la prostacycline étaient indépendants du récepteur de la PGI2 à la surface d'une cellule et pouvaient s'appuyer sur la capacité de la PGI2 à agir en tant qu'agoniste de la PPARγ.

En quoi les thiazolidinediones sont-elles intéressantes?

Les thiazolidinediones (TZD) sont des agonistes de PPARγ couramment utilisés dans le traitement du diabète et la pioglitazone TZD a été étudiée dans de nombreux modèles de cancer précliniques. Des études précliniques sur des surexpresseurs de PPARγ génétiquement modifiés et des agonistes de PPARγ par voie orale ont confirmé que l'activation de PPARγ favorise la différenciatio, inhibe la croissance tumorale et empêche la progression des lésions préinvasives dans les modèles murins. Dans des modèles précliniques, la pioglitazone par voie orale, et plus récemment inhalée, prévient à la fois les carcinomes à cellules adéno et épidermoïdes, en monothérapie ou en association avec des corticostéroïdes et de la metformine inhalés. Les raisons d'un rôle dans la chimioprévention du cancer du poumon ont également été étayées par une vaste étude portant sur les taux de cancer du poumon, de la prostate et du côlon chez des vétérans diabétiques traités avec TZD. Govindarajan et ses collègues ont rapporté une diminution de 33% de l'incidence du cancer du poumon par rapport aux utilisateurs non-TZD, suggérant que l'activation de PPARγ pourrait prévenir le cancer du poumon.

Pourquoi un essai clinique?

Ceci a conduit à un essai à double insu, randomisé, de phase II et contrôlé par placebo de la pioglitazone orale chez des fumeurs à haut risque ou d'anciens fumeurs atteints d'atypie cytologique des expectorations ou de dysplasie endobronchique connue. Cet essai a été répertorié et enregistré sur ClinicalTrials.gov (identifiant: NCT00780234).

Cet essai de chimioprévention de phase II, monocentrique, à double insu, à évalué la pioglitazone par voie orale chez des fumeurs actuels ou anciens à haut risque présentant une atypie cytologique des expectorations ou une dysplasie endobronchique connue.

Quel en est le résultat?

Après six mois de traitement, la pioglitazone n’a pas significativement amélioré l’histologie endobronchique par rapport au placebo; Cependant, le traitement par la pioglitazone a entraîné une amélioration histologique de certaines de ces lésions. Les auteurs concluent que de futures études visant à mieux caractériser la dysplasie réactive dans ce contexte sont justifiées.

To study immune cells, we must take into account their environment

- Posted by admin in English

Living organisms use energy in a radically different way than immune cells in vitro.

For years, scientists have used cells grown in Petri dishes to study the metabolic processes that fuel the immune system. But a new article suggests that living organisms use energy in a radically different way from immune cells in vitro.

The scientific consensus since Warburg's work is that immune cells, called T cells, convert glucose into energy to fuel cellular function. In fact there are different mechanisms by which a cell can get energy, the so-called metabolism or also respiration.

How do the cells get energy?

On the one hand, we distinguish anabolism, which represents all the biosynthetic pathways of cellular constituents, and on the other hand, catabolism, which represents all the pathways of degradation of these cellular constituents into small molecules to release their energy by oxidation or to rebuild other cellular constituents.

Catabolism can be differentiated between aerobic and anaerobic respiration. Aerobic respiration includes glycolysis, oxidative decarboxylation of pyruvate, citric acid cycle, oxidative phosphorylation.

The main degradation pathway is glycolysis, where sugars such as glucose and fructose are converted to pyruvate and generate ATP. Pyruvate is an intermediate in several metabolic pathways, but the majority is converted to acetyl-CoA by aerobic glycolysis (with oxygen) and introduced into the citric acid cycle.

Lipids are catabolized by hydrolysis to free fatty acids and glycerol. Glycerol enters glycolysis and the fatty acids are decomposed by beta-oxidation to release acetyl-CoA, which is then introduced into the citric acid cycle.

There are two important microbial methane formation pathways, by carbonate reduction (respiration) and acetate fermentation.

Warburg hypothesized that cancer growth is caused by energy-generating tumor cells (such as, for example, adenosine triphosphate / ATP) primarily through anaerobic degradation of glucose (called fermentation or anaerobic respiration). This contrasts with healthy cells, which primarily generate energy from the oxidative decomposition of pyruvate. Pyruvate is a final product of glycolysis and is oxidized in mitochondria. Therefore, according to Warburg, cancer should be interpreted as mitochondrial dysfunction.

For multicellular organisms, during brief periods of intense activity, muscle cells use fermentation to supplement ATP production from slower aerobic respiration.

What was discovered?

Jones and colleagues found that T cells in a living system use glucose as a building block for DNA replication and other maintenance tasks, in addition to converting glucose into raw energy. They also discovered that the way T cells treat glucose evolves during an immune response. The metabolism of glucose in T cells changes dynamically during an immune response. Glucose-dependent serine biosynthesis promotes T-cell proliferation in vivo.

enter image description here

This suggests that T cells can use resources differently in the body when they are fighting a bacterial infection such as Listeria or a disease like cancer.

Naïve CD8+ T cells differentiating into effector T cells increase glucose uptake and transition from resting metabolism to anabolic metabolism. Although much is known about the metabolism of cultured T cells, the way in which T cells utilize nutrients during the in vivo immune response is less well defined. The researchers therefore combined the bioenergetic profiling and 13C glucose perfusion techniques to study the metabolism of CD8+ T cells responding to Listeria infection.

In contrast to the in vitro activated T cells, which exhibit Warburg metabolism, physiologically activated CD8+ T cells exhibited higher levels of oxidative metabolism, higher bioenergetic capacity, differential pyruvate utilization, and high 13C carbon flux. glucose to the anabolic pathways, including the biosynthesis of nucleotides and serine. The glucose-dependent serine biosynthesis induced by the Phgdh enzyme was essential for the expansion of CD8+ T cells in vivo.

Our immune cells do not work in isolation

"It's like watching animal behavior in a zoo or in the wild - our immune cells do not work in isolation - they work with a host of other cells and factors that influence how and when they are used. of energy, "said Russell Jones, Ph.D., lead author of the study and head of the Metabolic and Nutritional Programming Group at the Van Andel Institute. "Understanding cell metabolism is a crucial part of therapeutic development, and our results reinforce the need to study these cells in an environment as close as possible to nature."

The findings have profound implications for how scientists study the complex and interconnected systems that underlie health and disease and how they translate this information into new diagnostic and treatment strategies.

"Immune cells react much more dynamically to infections and diseases than we previously thought," Jones said. "For a while, we're at a stage of metabolism research, it's like we're in the dark under a lamppost, we could only see in front of us, and these results will help us better understand this. which immune cells need for optimal function. "

Which suite will be given?

The results were made possible by a new method developed by collaborator Ralph DeBerardinis, MD, Ph.D., which allowed Jones and his colleagues to map how T cells use nutrients in living organisms. They have developed an infusion method to study T cell metabolism in vivo

"In the future, this new mapping technique will be invaluable in pursuing studies of specific diseases," said Eric Ma, Ph.D., lead author of the study and a postdoctoral researcher in the field. Jones's laboratory.

In the future, the team plans to design human studies to measure how T cells use glucose and other nutrients when they respond to pathogens or other diseases such as injuries or diseases such as cancer.

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

les organismes vivants utilisent l'énergie de façon radicalement différente de la façon de celle des cellules immunitaires in-vitro.

Pendant des années, les scientifiques ont utilisé des cellules cultivées dans des boîtes de Pétri pour étudier les processus métaboliques qui alimentent le système immunitaire. Mais un nouvel article suggère que les organismes vivants utilisent l'énergie de façon radicalement différente de la façon de celle des cellules immunitaires in-vitro.

Le consensus scientifique depuis les travaux de Warburg, est que les cellules immunitaires, appelées cellules T, convertissent du glucose en énergie pour alimenter la fonction cellulaire. En fait il y a différents mécanismes par lequel une cellule peut obtenir de l'énergie, ce que l'on appelle métabolisme ou aussi respiration.

Comment les cellules acquièrent-elle de l'énergie?

on distingue d'une part l'anabolisme, qui représente l'ensemble des voies de biosynthèse des constituants cellulaires, et d'autre part le catabolisme, qui représente l'ensemble des voies de dégradation de ces constituants cellulaires en petites molécules pour en libérer l'énergie par oxydation ou pour rebâtir d'autres constituants cellulaires.

On peut différencier le catabolisme en respiration aérobie et anaérobie. La respiration aérobie comprend la glycolyse, la décarboxylation oxydante du pyruvate, le cycle de l'acide citrique, la phosphorylation oxydative.

La principale voie de dégradation est la glycolyse, où des sucres tels que le glucose et le fructose sont convertis en pyruvate et génèrent de l'ATP. Le pyruvate est un intermédiaire dans plusieurs voies métaboliques, mais la majorité est convertie en acétyl-CoA par glycolyse aérobie (avec oxygène) et introduite dans le cycle de l'acide citrique.

Les lipides sont catabolisés par hydrolyse en acides gras libres et en glycérol. Le glycérol entre dans la glycolyse et les acides gras sont décomposés par bêta-oxydation pour libérer de l'acétyl-CoA, qui est ensuite introduit dans le cycle de l'acide citrique.

Il existe deux voies de formation de méthane microbiennes importantes, par réduction du carbonate (respiration) et fermentation par l'acétate.

Warburg a émis l'hypothèse que la croissance du cancer est causée par des cellules tumorales générant de l'énergie (comme, par exemple, l'adénosine triphosphate / ATP) principalement par la dégradation anaérobie du glucose (appelée fermentation ou respiration anaérobie). Cela contraste avec les cellules saines, qui génèrent principalement de l'énergie à partir de la décomposition oxydante du pyruvate. Le pyruvate est un produit final de la glycolyse et est oxydé dans les mitochondries. Par conséquent, selon Warburg, le cancer devrait être interprété comme un dysfonctionnement mitochondrial.

Pour les organismes multicellulaires, lors de brèves périodes d'activité intense, les cellules musculaires utilisent la fermentation pour compléter la production d'ATP à partir de la respiration aérobie plus lente.

Qu'est-ce qui a été découvert?

Jones et ses collègues ont découvert que les cellules T dans un système vivant utilisent le glucose comme éléments de base pour la réplication de l'ADN et d'autres tâches de maintenance, en plus de la conversion du glucose en énergie brute. Ils ont également découvert que la façon dont les cellules T traitent le glucose évolue au cours d'une réponse immunitaire. Le métabolisme du glucose dans les cellules T change de façon dynamique au cours d'une réponse immunitaire. La biosynthèse de la sérine dépendante du glucose favorise la prolifération des lymphocytes T in vivo.

enter image description here

Ce qui suggère que les cellules T peuvent utiliser les ressources de manière différente dans le corps lorsqu’elles combattent une infection bactérienne telle que Listeria ou une maladie comme le cancer.

Les cellules T naïves CD8 + se différenciant en cellules T effectrices augmentent l'absorption du glucose et le passage du métabolisme au repos au métabolisme anabolique. Bien que l'on en sache beaucoup sur le métabolisme des cellules T en culture, la façon dont les cellules T utilisent les nutriments au cours de la réponse immunitaire in vivo est moins bien définie. Les chercheurs ont donc combiné les techniques de profil bioénergétique et de perfusion de glucose 13C pour étudier le métabolisme des lymphocytes T CD8 + répondant à une infection par Listeria.

Contrairement aux cellules T activées in vitro, qui présentent le métabolisme de Warburg, les cellules T CD8 + activées physiologiquement présentaient des taux plus élevés de métabolisme oxydatif, une capacité bioénergétique plus élevée, une utilisation différentielle du pyruvate et un flux important du carbone 13C-glucose vers les voies anaboliques, y compris la biosynthèse des nucléotides et de la sérine. La biosynthèse de la sérine dépendante du glucose induite par l’enzyme Phgdh était essentielle à l’expansion des cellules T CD8 + in vivo.

Nos cellules immunitaires ne fonctionnent pas en vase clos

"Cela revient à observer le comportement des animaux dans un zoo ou dans la nature. Nos cellules immunitaires ne fonctionnent pas en vase clos - elles travaillent de concert avec une foule d'autres cellules et facteurs qui influencent le mode et le moment d'utilisation de l'énergie, "a déclaré Russell Jones, Ph.D., auteur principal de l'étude et responsable du groupe de programmation métabolique et nutritionnelle de l'Institut Van Andel. "Comprendre le métabolisme cellulaire est un élément crucial du développement thérapeutique. Nos résultats renforcent la nécessité d'étudier ces cellules dans un environnement aussi proche que possible de la nature."

Les résultats ont des implications profondes sur la façon dont les scientifiques étudient les systèmes complexes et interconnectés qui sous-tendent la santé et la maladie et sur la manière dont ils traduisent ces informations en de nouvelles stratégies de diagnostic et de traitement.

"Les cellules immunitaires réagissent de manière beaucoup plus dynamique aux infections et aux maladies que nous ne le pensions auparavant", a déclaré Jones. "Pendant un certain temps, nous en sommes à un stade de la recherche sur le métabolisme, c'est comme si nous étions dans l'obscurité sous un réverbère. Nous ne pouvions voir que devant nous. Ces résultats nous aideront à mieux comprendre ce dont les cellules immunitaires ont besoin pour une fonction optimale ".

Quelle suite va être donnée?

Les résultats ont été rendus possibles grâce à une nouvelle méthode mise au point en consultation avec son collaborateur Ralph DeBerardinis, M.D., Ph.D., qui a permis à Jones et ses collègues de cartographier la manière dont les cellules T utilisent les nutriments dans des organismes vivants. Ils ont mis au point d'une méthode de perfusion 13C pour étudier le métabolisme des cellules T in vivo

"A l'avenir, cette nouvelle technique de cartographie sera d'une valeur inestimable dans la poursuite d'études sur des maladies spécifiques", a déclaré Eric Ma, Ph.D., premier auteur de l'étude et chercheur postdoctoral dans le laboratoire de Jones.

À l’avenir, l’équipe prévoit de concevoir des études sur l’homme afin de mesurer la manière dont les cellules T utilisent le glucose et d’autres nutriments lorsqu’elles réagissent à des agents pathogènes ou à d’autres atteintes telles que des blessures ou des maladies telles que le cancer.

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

A new kind of cancer vaccine

- Posted by admin in English

Immunotherapy on demand

Our frequent readers know that this site contains a peptide generator for designing simple, inexpensive and personalized cancer vaccines. Scientists believe that it is possible to use a system on the same principle, but much more effective.

Checkpoint inhibitors are not effective for many patients

Control point inhibitor immunotherapies are revolutionizing the treatment of cancer. However, even in the most sensitive cancers, a substantial proportion (50-80%) of patients have a low to no positive response. A surprising finding in the analysis of these patients was that one of the best correlates of response was the total number of neo-antigens in the tumor.

Basics of the new proposal

When information is transferred from DNA to RNA in cancer cells, errors occur frequently, resulting in the production of proteins that can be recognized by the immune system. Scientists at the Biodesign Institute at Arizona State University say these proteins, known as cancer-specific antigens, are important because they can be used to design vaccines that can treat or prevent tumor progression.

The common point of all cancer tumor mutations is the production of neo-antigens, or small fragments of proteins called peptides, formed inside a cancer cell, which the host's immune system had not yet never seen. These aberrant peptides, present only in cancer cells, can boost the immune system through a vaccine. They propose that mis-splicing and RNA transcription errors, particularly INDELs of MS in coding regions, in cancer cells could also be a source of neo-antigens.

These errors made by cancer cells can be used to develop a vaccine against some cancers

"In a cancer cell, it turns out that all levels of information transfer from DNA to RNA to protein become more prone to errors," said Johnston. "We proposed that these errors in cancer cells could also be the source of a cancer vaccine."

A "frame shift" or "splicing" error occurs when the DNA information of a gene is poorly processed during the fabrication of RNA, in a basic cellular process called transcription and splicing RNA.

For the most part, these alterations can be managed and cleaned by the cell, without ever being exposed to the immune system. As the cancer progresses, due to the increased number of errors, protein waste accumulates more rapidly, submerging the cell and aberrant proteins are exposed and recognized by the immune cell.

"These are overwhelming the quality control systems of a cell, generating errors in the RNA and proteins released by the cancer cell, which the immune system can respond to," said Johnston.

A new tool

To discover neo-antigens in tumors, Johnston's team has developed a new type of chip. They made fleas with the 200,000 possible neo-antigens for five common cancers, allowing them to simply search for antibodies present in the blood collected by patients. This is much simpler than the current practice of obtaining and sequencing tumor DNA, a starting point for the "personal cancer vaccines" that many companies are currently pursuing.

This set makes it possible to detect all possible predicted frame shift peptides that any tumor cell could potentially produce. They customized this chip, which contained nearly 400,000 peptides, and analyzed them with blood samples from cancer patients (and healthy control samples) to look for the peptides with the most reactive antibodies.

The basic idea is to make a vaccine containing multiple (up to 100) abnormal peptides.

Interest of this new type of immunotherapy

"Personal vaccines against cancer are complicated and expensive," said Johnston. "In addition, only about 40% of tumors have enough mutations in the DNA to make a vaccine. We have found that even cold tumors at the DNA level make many errors in the DNA. RNA: The peptides we generate are much more immunogenic than the point mutations used in personal cancer vaccines. More importantly, we can make standard vaccines for much cheaper therapeutic or even preventive vaccines. "

A vaccine that helps fight the development of resistance

It should be difficult for tumor cells to move away from the vaccine because these FSs are variants and not inherited mutations. In particular, if the FS antigen were produced in the RNA of an essential gene, the tumor cells would restrict the presentation of the MHC or create an immunosuppressive environment to evade an immune response.

In summary, scientists have discovered another class of neo-antigens that could be useful for developing different types of cancer vaccines. They have also created a matrix format for directly detecting immune responses to these tumor antigens.

What will happen to these works

Too often university laboratories stop their research when they can file a patent, in the very uncertain hope, that a large company will offer a golden bridge to buy that patent. This hope is often disappointed, simply because the patents resulting from academic research are not reproducible, but also because they do not respond to a large number of medical and regulatory issues. It is normally the role of biotech to solve these difficulties to make a process attractive for large companies. Our scientists are much more adept. They recently launched a large clinical trial of a pan-cancer prophylactic dog dog cancer vaccine funded by the Open Philanthropy Project. If that succeeds, Johnston is eager to move on to the first human clinical trials.

Regarding this web site, we could possibly design a peptide generator based on this principle. Please do not hesitate to contact us. "contact at padiracinnovation dot org"

Une nouvelle sorte de vaccin contre le cancer

- Posted by admin in Français

De l'immunothérapie à la demande

Nos lecteurs assidus savent que ce site contient un générateur de peptides servant à concevoir des vaccins simples, peu coûteux et personnalisés contre le cancer. Des scientifiques pensent qu'il est possible d'utiliser un système sur le même principe, mais beaucoup plus efficace.

Les inhibiteurs à point de contrôle ne sont pas efficaces pour de nombreux patients

Les immunothérapies à inhibiteurs de point de contrôle révolutionnent le traitement du cancer. Cependant, même dans les cancers les plus sensibles, une part substantielle (50–80%) des patients a une réponse positive faible à nulle. Une découverte surprenante dans l'analyse de ces patients était que l'un des meilleurs corrélats de réponse était le nombre total de néo-antigènes dans la tumeur.

Fondements de la nouvelle proposition

Lorsque des informations sont transférées de l'ADN à l'ARN dans les cellules cancéreuses, des erreurs surviennent fréquemment, entraînant la production de protéines pouvant être reconnues par le système immunitaire. Pour les scientifiques de l’Institut Biodesign de l’Université d’Arizona State, ces protéines, appelées antigènes spécifiques du cancer, sont importantes, car elles peuvent être utilisées pour concevoir des vaccins capables de traiter ou de prévenir la progression tumorale.

Le point commun de toutes les mutations de tumeurs cancéreuses est la fabrication de néo-antigènes, ou de petits fragments de protéines appelés peptides, formés à l'intérieur d'une cellule cancéreuse, que le système immunitaire de l'hôte n'avait encore jamais vu. Ces peptides aberrants, présents uniquement dans les cellules cancéreuses, peuvent stimuler le système immunitaire grâce à un vaccin. Ils proposent que les erreurs de mal épissage et de transcription d'ARN, en particulier des INDEL des MS dans les régions codantes, dans les cellules cancéreuses pourraient également être une source de néo-antigènes.

Ces erreurs commises par les cellules cancéreuses peuvent servir à élaborer un vaccin contre certains cancers

"Dans une cellule cancéreuse, il s'avère que tous les niveaux de transfert d'information de l'ADN vers l'ARN vers la protéine deviennent plus sujets aux erreurs", a déclaré Johnston. "Nous avons proposé que ces erreurs commises dans les cellules cancéreuses puissent également constituer la source d'un vaccin contre le cancer."

Une erreur de "décalage de cadre" ou "d'épissage" se produit lorsque l'information de l'ADN d'un gène est mal traitée lors de la fabrication de l'ARN, dans un processus cellulaire de base appelé transcription et épissage de l'ARN.

Pour la plupart, ces altérations peuvent être gérées et nettoyées par la cellule, sans jamais être exposées au système immunitaire. Au fur et à mesure que le cancer progresse, en raison de l'augmentation du nombre d'erreurs, les déchets protéiques s'accumulent plus rapidement, submergeant la cellule et les protéines aberrantes sont exposées et reconnues par la cellule immunitaire.

"Celles-ci submergent les systèmes de contrôle de la qualité d'une cellule, générant des erreurs dans l'ARN et les protéines libérées par la cellule cancéreuse, auxquelles le système immunitaire peut réagir", a déclaré Johnston.

Un nouvel outil

Pour découvrir les néo-antigènes dans les tumeurs, l'équipe de Johnston a développé un nouveau type de puce (array). Ils ont fabriqué des puces présentant les 200 000 néo-antigènes possibles à cinq cancers courants, leur permettant ainsi de rechercher simplement les anticorps présents dans le sang prélevé par les patients. Ceci est beaucoup plus simple que la pratique courante qui consiste à obtenir l’ADN de la tumeur et à le séquencer, un point de départ pour les «vaccins anticancéreux personnels» que de nombreuses entreprises poursuivent actuellement.

Cet ensemble permet de détecter tous les peptides de décalage de trame prédits possibles que toute cellule tumorale pourrait potentiellement produire. Ils ont personnalisé cette puce, qui contenait près de 400 000 peptides, et les a analysés avec les échantillons de sang de patients cancéreux (et des échantillons sains servant de contrôle) pour rechercher les peptides présentant les anticorps les plus réactifs.

L'idée de base consiste à fabriquer un vaccin contenant de multiples (jusqu'à 100) peptides anormales.

Intérêt de ce nouveau type d'immunothérapie

"Les vaccins personnels contre le cancer sont compliqués et coûteux", a déclaré Johnston. "De plus, environ 40% seulement des tumeurs ont suffisamment de mutations dans l'ADN pour pouvoir fabriquer un vaccin. Nous avons découvert que même les "tumeurs froides" au niveau de l'ADN font beaucoup d'erreurs au niveau de l'ARN. Les peptides que nous générons sont beaucoup plus immunogènes que les mutations ponctuelles utilisées dans les vaccins anticancéreux personnels. Plus important encore, nous pouvons fabriquer des vaccins standards pour des vaccins thérapeutiques ou même préventifs beaucoup moins coûteux."

Un vaccin qui permet de lutter contre le développement d'une résistance

Il devrait être difficile pour les cellules tumorales de s’éloigner du vaccin, car ces FS sont des variants et non des mutations héréditaires. En particulier, si l'antigène FS était produit dans l'ARN d'un gène essentiel, les cellules tumorales devraient restreindre la présentation du MHC ou créer un environnement immunosuppresseur pour échapper à une réponse immunitaire.

En résumé, les scientifiques ont découvert une autre classe de néo-antigènes qui pourrait être utile pour développer différents types de vaccins anticancéreux. Ils ont également créé un format matriciel permettant de détecter directement les réponses immunitaires à ces antigènes tumoraux.

Quel suite va être donné à ces travaux

Trop souvent les laboratoires universitaires arrêtent leur recherche quand ils peuvent déposer un brevet, dans l'espoir très incertain, qu'une grande entreprise offrira un pont d'or pour acheter ce brevet. Cet espoir est très souvent déçu, tout simplement parce que les brevets issues de la recherche académique ne sont pas reproductible, mais aussi parce qu'ils ne répondent pas à un grand nombre de problématiques médicales et réglementaires. C'est normalement le rôle des biotech de régler ces difficultés pour rendre un procédé attractif pour les grandes sociétés. Nos scientifiques, eux, sont beaucoup plus adroits. Ils ont récemment lancé un grand essai clinique sur un vaccin prophylactique pan-cancéreux contre le cancer du chien, financé par l'Open Philanthropy Project. Si cela réussit, Johnston est impatient de passer aux premiers essais cliniques sur l'homme.

En ce qui concerne ce site, nous pourrions éventuellement concevoir un générateur de peptides basé sur ce principe. Nhésitez pas à nous contacter à ce sujet. "contact at padiracinnovation dot org"

Vieillissement et risque de cancer

- Posted by admin in Français

Vieillir c'est muter

La possibilité de mutations somatiques dans le sang, contribuant non seulement au risque de cancer, mais également aux attaques cardiaques et aux accidents vasculaires cérébraux, a suscité de nombreuses discussions dans les publications scientifiques de haut niveau, et une vaste étude portant sur plusieurs cohortes publiée en 2017 semble confirmer.

Lorsque de nouvelles cellules sont nécessaires pour remplacer les anciennes cellules usées de nos organes et tissus, l'ADN qui code pour le plan de tous les composants cellulaires d'une cellule doit être répliqué fidèlement dans chacune des nouvelles cellules. Lors de la réplication, lorsqu'une cellule se divise pour créer deux cellules, jusqu'à 100 000 erreurs se produisent. Heureusement, les cellules en cours de réplication corrigent presque toutes les erreurs, même si environ 10 erreurs persistent pour chaque nouvelle cellule formée. Ces erreurs s'appellent des mutations.

Le cas des cellules de la moelle osseuse

Chaque personne naît avec environ 50 000 à 200 000 cellules souches de la moelle osseuse. Ces cellules souches se divisent pour produire deux cellules «filles» toutes les 40 semaines environ. En moyenne, l'une des deux filles reste une cellule souche, tandis que l'autre s'engage à se reproduire plusieurs fois pour répondre au besoin de cellules sanguines matures dans la circulation. Les cellules souches de la moelle osseuse, qui ne se divisent pas aussi souvent que les cellules engagées, sont relativement protégées contre le développement de nouvelles mutations imputables à des erreurs de copie de l'ADN. Néanmoins, avec 10 mutations ou plus apparaissant à chaque fois qu'une cellule se divise en deux, environ 60 à 240 millions de mutations pourraient s'accumuler dans le pool de cellules souches de la moelle osseuse sur une durée de vie de 80 ans.

Par chance, l'une des mutations de cellules souches de la moelle osseuse acquise pourrait affecter un gène codant pour une fonction importante dans le renouvellement ou la survie des cellules souches. Si une telle mutation confère un avantage à une cellule souche par rapport aux autres, la production de cette cellule souche distincte sur le plan génétique pourrait en venir à dominer la production de cellules sanguines, un phénomène connu sous le nom d'hématopoïèse clonale. La perte d'autres cellules souches de la moelle osseuse à mesure que l'on vieillit risque d'accentuer la domination d'un tel clone de cellules souches doté d'un gène mutant. L'hématopoïèse clonale est rare avant l'âge de 50 ans (1% des individus), mais elle peut apparaître chez 10 à 20% des personnes de plus de 70 ans. Il convient de noter que l'hématopoïèse clonale aurait été silencieuse si elle n'avait pas été reconnue par séquençage des cellules du sang, car il n'est pas associé à des symptômes ou des anomalies dans les tests de laboratoire conventionnels.

Seuil de risque

L'hématopoïèse clonale peut être un précurseur précoce de la leucémie et un trouble rare de la moelle osseuse appelé syndrome myélodysplasique. Heureusement, le risque d'apparition de ces cancers du sang chez les personnes atteintes d'hématopoïèse clonale peut être de 1% ou moins par an. Cela a incité certains à nommer l’hématopoïèse clonale à potentiel indéterminé (CHIP). L'hématopoïèse clonale en soi n'est pas considérée comme un cancer hématologique. Néanmoins, il est de plus en plus évident que cette affection peut avoir des effets néfastes sur la santé humaine. Une atteinte clonale de 2% du sang a été provisoirement proposée comme seuil de risque.

Risque de cancer du sang

La présence d'hématopoïèse clonale augmente le risque de cancer du sang et est corrélée à un risque accru de mortalité globale. Au cours d'une année donnée, une infime fraction de la population générale développera un cancer hématologique tel que le syndrome myélodysplasique (MDS) ou AML; on estime que seulement 3 à 4 personnes sur 100 000 risquent de souffrir d'un SMD au cours d'une année donnée et que 4 personnes sur 100 000 développeront une LMA.

Risque cardiovasculaire

La présence d'hématopoïèse clonale augmente également le risque de crise cardiaque et d’attaque cérébrale. Une association forte entre PUC et crise cardiaque.

Comorbidités

En plus de ses effets sur ceux qui seraient autrement considérés comme étant en bonne santé, CHIP peut avoir des implications dans certains contextes de maladie. Il a été démontré que les patients atteints de CHIP qui subissent une greffe de cellules souches autologue (ASCT) dans le cadre de leur traitement du lymphome ont des résultats pires que ceux des patients sans CHIP. Le pronostic plus sombre pour ces patients est dû à la fois à une augmentation des néoplasmes myéloïdes liés au traitement et à un risque accru de mortalité cardiovasculaire. [10]

Traitement

Il n'existe actuellement aucun traitement pour ralentir ou cibler les mutations CHIP. Parallèlement au fait que la progression d'une tumeur maligne hématologique à une malignité hématologique reste peu fréquente, les experts médicaux se sont prononcés contre le dépistage préemptif de la CHIP, tout en suggérant un suivi systématique.

Troubles associés

L'hématopoïèse clonale est parfois comparée aux troubles sanguins non apparentés de la gammapathie monoclonale de signification indéterminée (MGUS) et à la lymphocytose monoclonale à cellules B (MBL), qui présente des similitudes dans son amorçage apparent pour une maladie hématologique plus avancée associée à une absence de symptômes et à une survenue globale.

Est-ce une explication à portée générale de l'apparition des cancers chez les personnes âgées?

Plus de 80% des cancers humains surviennent après 60 ans. Cela soulève plusieurs questions. Est-ce que d'autres cellules souches du corps accumulent des mutations avec l'âge, comme les cellules souches de la moelle osseuse? Les organes et tissus fournis par ces cellules souches sont-ils prédisposés à la domination clonale par un clone génétiquement distinct doté d'un gène mutant? Est-ce que la fonction des cellules souches clonales dans ces organes prédispose une personne à d'autres cancers?

La FDA étend l'usage de nombreux médicaments anti-cancéreux

- Posted by admin in Français

La FDA a étendu l'usage des médicaments anti-cancéreux suivants en 2019

Cyramza

Le ramucirumab antiangiogénique (Cyramza) a été approuvé pour le traitement des patients atteints d'un carcinome hépatocellulaire, le type de cancer du foie le plus répandu, en cas de progression malgré le traitement par un autre antiangiogène appelé sorafénib (Nexavar). Le ramucirumab était précédemment approuvé pour traiter certains patients atteints de trois autres types de cancer, les cancers colorectal, du poumon et de l'estomac.

Bavencio

L'avelumab immunothérapeutique (Bavencio) a été approuvé en association avec l'axitinib antiangiogénique (Inlyta) pour le traitement initial des patients atteints d'un carcinome rénal avancé, le type de cancer du rein le plus répandu. Avelumab était précédemment approuvé pour traiter certains patients atteints de deux autres types de cancer, le cancer de la vessie et le carcinome à cellules de Merkel.

Revlimid

Le lénalidomide à visée moléculaire ciblée (Revlimid) a été approuvé en association avec le rituximab (Rituxab), une immunothérapie pour le traitement de patients atteints d'un lymphome folliculaire ou d'un lymphome en zone marginale ayant progressé malgré un traitement antérieur. La lénalidomide avait déjà été approuvée pour traiter certains patients atteints de deux autres types de cancer, le lymphome à cellules du manteau et le myélome multiple.

Keytruda

Le pembrolizumab (Keytruda) est une immunothérapie qui a été approuvé pour le traitement des patients atteints d'un carcinome épidermoïde récurrent, localement avancé ou métastatique de l'œsophage, dont le test positif pour la protéine PD-L1 a progressé malgré le traitement par au moins un autre traitement systémique. Le pembrolizumab était précédemment approuvé pour traiter certains patients atteints de 11 autres types de cancer, y compris le mélanome et le cancer du poumon, ainsi que pour traiter les patients présentant tout type de tumeur solide caractérisé par la présence d'un déficit en MSI élevé ou en ROR.

Alpelisib

Alpelisib cible la phosphatidylinositol 3-kinase (PI3K) alpha, qui joue un rôle important dans la multiplication et la survie des cellules. La recherche a montré que les mutations du gène PIK3CA, qui code la protéine PI3K-alpha, favorisent la multiplication et la survie d'environ 40% des cancers du sein à récepteurs hormonaux positifs, HER2-négatifs. Alpelisib est devenu le premier traitement thérapeutique approuvé ciblé PI3K-alpha pour le traitement du cancer du sein. Son utilisation en association avec le fulvestrant a été spécifiquement approuvée pour le traitement du cancer du sein HER2 négatif à HER2 négatif, avancé ou métastatique, avec cancer du sein avancé ou métastatique, qui a donné des résultats positifs pour les mutations de PIK3CA et qui a progressé pendant ou après le traitement endocrinien.

Polatuzumab vedotin-piiq

Polatuzumab vedotin-piiq est un conjugué anticorps-médicament destiné au traitement d'un cancer du sang commun, le lymphome diffus à grandes cellules B. Il comprend l'agent cytotoxique monométhyl auristatin E attaché à un anticorps qui cible CD79b, une protéine qui se trouve à la surface de cellules de lymphome B diffus à grandes cellules. Polatuzumab vedotin-piiq a été spécifiquement approuvé pour une utilisation en association avec la bendamustine chimiothérapeutique cytotoxique et le rituximab immunothérapeutique destiné au traitement des adultes atteints d'un lymphome à grandes cellules B n'ayant pas répondu ou ayant récidivé après deux autres traitements.

Selinexor

Selinexor cible une protéine appelée XPO1, qui est présente à des niveaux élevés dans les cellules de myélome multiple. Il a été approuvé pour le traitement des patients atteints de myélome multiple dont la maladie a récidivé à la suite d'un traitement par au moins deux inhibiteurs du protéasome, ou au moins deux agents immunomodulateurs et un immunothérapeutique ciblant CD38.

Darolutamide

Le darolutamide cible le récepteur des androgènes chez les patients atteints d'un cancer de la prostate. Ce faisant, il prive les cellules cancéreuses de la prostate des androgènes (hormones telles que la testostérone) qui alimentent leur croissance. Le darolutamide est devenu le troisième médicament approuvé par la FDA en raison de sa capacité à retarder l'évolution du cancer de la prostate vers un stade métastatique. Les deux autres, l'apalutamide (Erleada) et l'enzalutamide (Xtandi), ont été approuvés en 2018. Ces trois agents thérapeutiques sont spécifiquement approuvés pour le traitement du cancer de la prostate non métastatique résistant à la castration.

Quoi de neuf dans la recherche en thérapie cellulaire immunitaire?

- Posted by admin in Français

Quoi de neuf dans la recherche en thérapie cellulaire immunitaire?

Nous voyons enfin des recherches fondamentales en matière de cancer, commencer à porter leurs fruits. Depuis 2011, l’immunothérapie est apparue comme une nouvelle approche passionnante du traitement du cancer qui donne des réponses durables et bien qu’initialement limitée à certains cancers, la recherche voudrait étendre ce concept aux tumeurs solides. La recherche dans ce domaine se développe depuis 25 ans, mais ce n’est qu’au cours des 10 dernières années que nous avons vu certaines de ces thérapies fournir des réponses réelles et durables pour les patients. Quelques patients ont eu des réponses remarquables à ces traitements, mais d’autres ont développé des résistances à ces approches.

Inhibiteurs de point de contrôle

Une grande partie de l’intérêt a porté sur les inhibiteurs de point de contrôle (PD-L1), immunothérapeutiques qui libèrent les «freins» à la surface des cellules immunitaires appelées lymphocytes T, dont certains sont naturellement capables de détruire les cellules cancéreuses.

Thérapie cellulaire adoptive CAR T

Plus récemment, une deuxième approche est apparue qui exploite la puissance du système immunitaire, connue sous le nom de thérapie cellulaire immunitaire ou thérapie cellulaire adoptive. Au lieu de libérer les freins à l'activité immunitaire sur les lymphocytes T, la thérapie cellulaire adoptive augmente la puissance du système immunitaire du patient en augmentant le nombre de cellules T tueuses de cancer.

La thérapie cellulaire adoptive est une procédure médicale complexe qui est personnalisée pour chaque patient. Elle commence par l’extraction des lymphocytes T. En laboratoire, ces lymphocytes T sont génétiquement modifiés pour cibler les antigènes spécifiques aux tumeurs, puis élargis ou sont élargis en fonction de leur réactivité tumorale naturelle. Une fois que suffisamment de lymphocytes T ont été générés, elles sont infusées de nouveau dans le patient pour aider à la régression de tumeur de médiation.

Différentes thérapie CAR T

Il existe plusieurs types de thérapie cellulaire adoptive. Une approche utilise des lymphocytes infiltrant de tumeur (TILs) qui sont isolés à partir de la tumeur d’un patient, cultivées pour accroître leur nombre en laboratoire, et infusés de nouveau dans le patient. Une deuxième approche consiste à former les lymphocytes T récoltés auprès d’un patient à exprimer un récepteur t-cellulaire spécifique à l’antigène tumoral (TCR) afin que les lymphocytes T puissent reconnaître et attaquer les cellules tumorales qui expriment de tels antigènes. Cela se fait en modifiant génétiquement les lymphocytes T issues d’un patient pour exprimer un nouveau récepteur chimérique qui reconnaît un antigène spécifique sur la surface cellulaire.

Quels thérapies CAR T sont autorisées?

À l’heure actuelle, les seules thérapies cellulaires adoptives approuvées par la Food and Drug Administration (FDA) des États-Unis sont les thérapies à cellules T (Récepteur schimérique) des récepteurs de l’antigène chimérique (CAR), le Tisagenlecleucel (Kymriah) et l’Axicabtagene ciloleucel (Yescarta).

Le Tisagenlecleucel et le Yescarta ciblent les cellules cibles qui expriment CD19, cet antigène leucocytaire humain qui s’exprime à la surface des lymphocytes B. En fait peu de patients répondent favorablement à ces thérapies. L’un des principaux défis du domaine est d’identifier des moyens d’augmenter le nombre de patients pour lesquels le traitement par la thérapie à cellules CAR T donne une réponse significative.

Comment augmenter substantiellement le nombre de patients répondant aux thérapies CAR T?

Une stratégie potentielle est d’identifier les antigènes qui sont présents sur les cellules cancéreuses qui ne sont présent dans les tissus sains, si nous pouvons trouver les antigènes appropriés, nous pourrions être en mesure de concevoir de nouvelles cellules CAR T pour attaquer spécifiquement les tumeurs solides qui expriment de tels antigènes. Une autre stratégie consiste à explorer pleinement d’autres médicaments en combinaison avec les thérapies à cellules CAR T. Par exemple, il existe des médicaments qui bloquent les composants du microenvironnement tumoral suppressif, tels que la transformation du facteur de croissance bêta (TGFβ) ou le facteur de croissance endothéliale vasculaire (VEGF), qui peuvent être utilisé en synergie avec les thérapies à cellule CAR T. Alternativement, nous pourrions combiner les lymphocytes CAR T avec des médicaments qui stimulent les lymphocytes T, tels que l’anti-4-1BB ou anti-OX40. Une autre combinaison serait la thérapie à cellule CAR T avec des inhibiteurs de point de contrôle.

Comment réduire les coûts de ces thérapies CAR T?

Un autre défi dans ce domaine est l’évolutivité de bon nombre de ces stratégies thérapeutiques. Quelle est la meilleure façon d’intensifier ces processus et de réduire les coûts associés aux thérapies cellulaires adoptives? C’est une question sans réponse à l’heure actuelle, mais nous allons sans doute assister à des progrès spectaculaires dans la technologie qui permet la mise à l’échelle, tels que de nouvelles plates-formes automatisées et de nouvelles façons de fabriquer cliniquement des thérapies à cellule T. Ces percées permettront de produire des produits autologues de façon plus fiable, plus efficace et peut-être à un coût réduit par rapport à ce que nous voyons actuellement.

Quelles sont les alternatives aux thérapies CAR T?

Jusqu’à présent, une grande partie de l’intérêt entourant les thérapies à cellules immunitaires a porté sur les thérapies à cellules CAR T. Quelles sont les thérapies alternatives les plus intéressantes? La thérapie de TIL obtient finalement l’attention qu’elle mérite - elle a clairement une activité reproductible, particulièrement dans le mélanome, et elle est examinée dans d’autres types pleins de tumeur aussi bien.

Il y a aussi un intérêt certain autour des cellules T naturelles qui ne sont pas modifiées, qu’elles soient tumeur-infiltrant ou simplement des cellules antigène-spécifiques sélectionnées parmi des patients. Un autre domaine en cours de développement sont les thérapies cellulaires adoptives qui utilisent des cellules tueuses naturelles (NK). Ces cellules immunitaires innées sont des machines à tuer uniques qui ne nécessitent pas d’amorçage par des cellules présentant des antigènes, ce qui leur permet de tuer rapidement les cellules cancéreuses.

Plusieurs stratégies cellulaires adoptives intègrent une approche personnalisée pour reconnaître les néoantigènes spécifiques au patient. Cette approche a été mise au point par Steven Rosenberg et d’autres personnes ont exprimé l’idée que cette méthode est irréalisable et impossible. Cependant, le secteur commercial a commencé à investir dans ce domaine, tant pour les vaccins que pour les cellules T modifiées. Une fois que les coûts auront baissé, et l’efficacité de la fabrication se sera améliorée, l’ingénierie d’un produit personnalisé peut devenir une option réaliste.

Les aspects évolutifs et techniques de cette approche demeurent difficiles à l’heure actuelle, mais cette méthode a fait ses preuves chez certains patients. Une approche intermédiaire consisterait à personnaliser partiellement une thérapie, nous pourrions générer une bibliothèque de cellules T qui ciblerait les antigènes courants, et une fois que les antigènes spécifiques qui sont exprimés chez le patient sont identifiés, nous pourrait administrer le traitement à cellule T correspondant. Cette approche serait un peu moins chronophage que les thérapies habituelles.

Quels sont les domaines de la thérapie cellulaire adoptive qui innovent actuellement?

Nous allons voir des progrès dans la fabrication et l’ingénierie qui permettra d’améliorer l’efficacité de ces thérapies. Je vois aussi le domaine de la bioingénierie s’associer à la biologie synthétique, à l’immunologie fondamentale des lymphocytes T et à la biologie moléculaire, il y a une sorte de convergence des champs d’études qui nous permettra de fabriquer des lymphocytes T plus sophistiqués. Il va y avoir beaucoup d’innovation dans cet espace dans les années à venir, par exemple sur les moyens de changer le phénotype des cellules T afin d’améliorer leur résistance aux effets négatifs du microenvironnement immunitaire. Un autre exemple peut être trouvé chez Carl June et ses collègues qui étudient l’utilisation de CRISPR pour enlever génétiquement le blocage immunitaire PD-1 des cellules CAR T afin d’augmenter leur potentiel agressif.

La FDA autorise de nouveaux médicaments contre le cancer de la vessie, des poumons et du rein.

Aux États-Unis, la Food and Drug Administration (FDA) a approuvé l'imonothérapeutique atezolizumab (Tecentriq) pour le traitement de certains patients atteints d'un cancer du poumon à petites cellules (CPPC). Le 12 avril 2019, elle a approuvé un nouveau traitement thérapeutique à base de molécules, l'erdafitinib (Balversa), destiné au traitement de certains patients atteints d'un cancer de la vessie. Puis, le 19 avril 2019, elle a approuvé le pembrolizumab (Keytruda), destiné au traitement de certains patients atteints d'un cancer du rein.

Combinaison d'un immunothérapeutique avec une chimiothérapie pour le cancer du poumon à petites cellules

Le CPPC/SCLC représente environ 15% des cancers du poumon diagnostiqués aux États-Unis, selon le National Cancer Institute (NCI). Cela se traduit par environ 34 000 nouveaux cas de la maladie chaque année. Malheureusement, la maladie est le plus souvent diagnostiquée chez la plupart des patients (70%) seulement quand elle est à un stade avancé.

enter image description here Image via Wikimedia.

Au cours des deux dernières décennies, peu de progrès ont été réalisés par rapport au CPPC à stade avancé. Les résultats chez les patients diagnostiqués avec un CPPC à un stade avancé sont médiocres. Même avec un traitement, la survie médiane n’est que de six à 12 mois.

Le traitement standard des CPPC à un stade avancé comprend une chimiothérapie d'association, généralement une combinaison de deux agents d'un agent chimiothérapeutique à base de platine, soit du cisplatine ou du carboplatine, et de l'étoposide. La nouvelle approbation ajoute l’atezolizumab à une chimiothérapie associant carboplatine et étoposide pour le traitement initial des adultes atteints d’un CPPC à un stade avancé.

L’atezolizumab agit en libérant un frein appelé PD-1 sur les cellules immunitaires naturelles luttant contre le cancer, appelées cellules T. Il empêche une protéine appelée PD-L1 de s’engager dans le frein PD-1, permettant ainsi aux cellules T de détruire les cellules cancéreuses. L'ajout de l'atezolizumab à une chimiothérapie d'association standard pour les CPPC à un stade avancé a été justifié par le fait que la maladie se caractérise par un taux de mutation élevé. Les cancers avec des taux de mutation élevés déclenchent généralement des cellules T anticancéreuses et peuvent réagir aux immunothérapeutiques libérant des freins à cellules T.

La nouvelle approbation de l’atezolizumab repose sur les résultats de l’essai clinique de phase III randomisé IMPower133. Les résultats, publiés l'année dernière dans le New England Journal of Medicine, ont montré que parmi les 201 patients atteints de CPPC à un stade extensif et n'ayant jamais été traités, et traités avec atezolizumab, carboplatine et étoposide, la survie globale médiane était de 12,3 mois. La survie globale médiane était significativement inférieure, 10,3 mois, parmi les 202 patients qui ont reçu un placebo, le carboplatine et l'étoposide.

Avant cette approbation pour le CPPC à un stade avancé, atezolizumab était approuvé pour le traitement de certains patients atteints d'un cancer du sein triple négatif en mars 2019, pour le traitement de certains patients atteints d'un cancer de la vessie en mai 2016 et pour le traitement de certains patients atteints d'un cancer du poumon non à petites cellules Octobre 2016.

Un nouveau traitement moléculaire ciblé du cancer de la vessie

Le cancer de la vessie est le sixième cancer le plus fréquemment diagnostiqué aux États-Unis, selon le NCI. Plus de 90% des 80 470 nouveaux cas de cancer de la vessie qui devraient être diagnostiqués aux États-Unis en 2019 seront classés dans les carcinomes urothéliaux car ils surviendront dans les cellules constituant l'urothélium à cellules de transition qui tapisse la vessie.

enter image description here Image via Wikimedia.

La recherche, y compris un article publié dans la revue de l'AACR, Clinical Cancer Research, a montré que jusqu'à 30% des carcinomes urothéliaux présentaient une altération de l'un des quatre gènes FGFR, les altérations les plus courantes étant des mutations du gène FGFR3. Ces données suggèrent que le ciblage des FGFR pourrait constituer une nouvelle approche du traitement du carcinome urothélial.

Erdafitinib est le premier agent thérapeutique ciblé sur le FGFR approuvé par la FDA pour le traitement de certains patients atteints de carcinome urothélial. Il est destiné aux patients atteints d'un carcinome urothélial localement avancé ou métastatique qui présente un test positif pour des altérations génétiques spécifiques de FGFR2 ou FGFR3 et qui a progressé pendant ou après le traitement par une chimiothérapie à base de platine.

L’approbation de l’erdafitinib était fondée sur les résultats de l’essai clinique de phase II de l’étude BLC2001, selon la FDA. Les résultats ont montré que 32,2% des 87 patients ayant reçu de l'erdafitinib présentaient un retrait de la tumeur complet ou partiel. La durée médiane de ces réponses était de 5,4 mois.

Les altérations génétiques du FGFR détectées dans les tumeurs des patients inclus dans l'essai étaient des mutations du FGFR3 ou des fusions de gènes impliquant le FGFR2 ou le FGFR3, selon Janssen Pharmaceutical Companies, la société qui commercialise l'erdafitinib. La FDA a approuvé un nouveau test pour détecter ces altérations et d'autres altérations génétiques spécifiques du FGFR en même temps qu'elle approuvait l'erdafitinib. Le nouveau test, appelé kit therascreen FGFR RGQ RT-PCR, est nécessaire pour identifier les patients atteints d’un carcinome urothélial localement avancé ou métastatique pour lesquels l’erdafitinib est une option de traitement appropriée.

Combinaison d'un traitement immunothérapeutique et d'un traitement moléculaire ciblé contre le cancer du rein

Le NCI estime que 73 820 nouveaux cas de cancer du rein seront diagnostiqués aux États-Unis en 2019. Environ 85% de ces cas seront classés dans la catégorie des carcinomes à cellules rénales.

De nombreux patients chez lesquels un carcinome à cellules rénales métastatique a récemment été diagnostiqué sont d'abord traités avec l'un des nombreux agents thérapeutiques approuvés par la FDA qui ciblent un certain nombre de kinases, notamment le VEGF; Le sunitinib (Sutent) est l’un des médicaments les plus couramment utilisés. L’axitinib (Inlyta) est une autre de ces thérapies.

La FDA a maintenant approuvé un nouveau traitement initial du carcinome rénal avancé: une association d'axitinib et du pembrolizumab immunothérapeutique, qui libère le frein PD-1 sur les cellules T de lutte contre le cancer. L'approbation était basée sur les résultats de l'essai clinique randomisé de phase III KEYNOTE-426, récemment publiés dans le New England Journal of Medicine. En résumé, les patients randomisés dans l'association ont significativement amélioré leur taux de survie globale par rapport aux patients randomisés sous sunitinib. Après un suivi médian de 12,8 mois, le taux de survie estimé à 12 mois était de 89,9% pour le groupe recevant l'association axitinib-pembrolizumab, contre 78,3% pour le groupe recevant le sunitinib, ce qui se traduirait par un risque de décès réduit de 47%. De plus, la survie sans progression médiane était significativement plus longue chez les patients randomisés avec l'association que chez ceux randomisés avec le sunitinib; il était de 15,1 mois pour le groupe traité versus 11,1 mois pour le groupe sunitinib.

Google et le cancer du poumon

- Posted by admin in Français

Détecter automatiquement les cancers du poumon

Parmi les cancers, le cancer du poumon est l’un des plus meurtriers. Le détecter est un challenge pour les radiologues. Certains nodules semblent menaçants mais se révèlent être de faux positifs. Les faux positifs entraînent des coûts en examens ultérieurs et aussi sont une source d’inconfort voire de détresse morale pour les patients. En effet les faux positifs conduisent les patients à subir des biopsies invasives et d’autres procédures. Les avantages globaux du dépistage systématique ne semblent pas évident. Dans le même temps, d’autres nodules échappent complètement à l’examen et se développent, quasiment sans symptômes, jusqu’au stade métastatique. Nombre de cancers du poumon (50 %) sont ainsi détectés seulement alors qu’ils sont déjà au stade IV.

Google vient de dévoiler un système d’intelligence artificielle qui, lors de tests préliminaires, démontre un talent remarquable pour détecter les cancers du poumon.

Une détection de cancer du poumon

Une étude publiée dans Nature Medicine a montré qu’un système, rivalisait voire surpassait en qualité avec le travail de six radiologues pour déterminer si les patients avaient un cancer. Il a détecté 5% de cancers de plus que les radiologues et diminue le nombre de faux positifs de 11%. Les résultats sont comparables à ceux des radiologues lorsque des images antérieures de patients sont incluses dans l’évaluation. Ce système d’apprentissage automatique a été entraîné sur 42 000 tomodensitogrammes de patients pris lors d’un essai clinique des National Institutes of Health.

Les résultats soulignent le potentiel de l’IA pour améliorer le dépistage du cancer du poumon et aider les radiologues à diagnostiquer les tumeurs malignes plus tôt et avec plus de précision, bien que cela ne garantit pas que cela aiderait les patients à vivre plus longtemps.

"Ces chercheurs disposent d’une technologie qui améliorera énormément la précision du dépistage", a déclaré le Dr Otis Brawley, professeur d’oncologie et d’épidémiologie à la Johns Hopkins University et ancien vice-président exécutif de l’American Cancer Society. Il est généralement sceptique quant au dépistage du cancer du poumon, mais souligne que les performances de Google en matière de réduction des faux positifs constituent un progrès significatif.

«Cela va éviter d’autres problèmes aux personnes qui se font dépister», a déclaré Brawley, ajoutant que la performance élevée du système à cet égard ne signifie pas nécessairement qu’il sauvera davantage de vies du cancer du poumon.

Le système de Google nécessitera des tests plus rigoureux, probablement un essai contrôlé randomisé, avant de pouvoir être mis en pratique sur le plan médical. L’étude étant limitée aux patients déjà traités, il est donc impossible de dire si le système, lorsqu’il est utilisé sur de nouveaux patients, entraînera des soins plus efficaces et de meilleurs résultats.

Les dirigeants de Google ont reconnu ce fait dans l’étude et ils travaillent avec des partenaires cliniques pour affiner et valider le système. «Pour évaluer pleinement cette situation, vous devez travailler avec des organisations de recherche et mener des essais à grande échelle pour comprendre comment cette technologie fonctionnera à grande échelle et sur de larges populations», a déclaré Daniel Tse, chef de produit Google. Il a ajouté que la société avait eu des discussions préalables à la soumission avec la Food and Drug Administration pour discuter des critères d’approbation.

Les ingénieurs de Google qui ont mis au point le système d’intelligence artificielle ont souligné qu’il n’était pas conçu pour remplacer les radiologues, mais pour améliorer leur capacité à détecter les nodules et à déterminer s’ils étaient dangereux. Les systèmes assistés par ordinateur existants séparent la détection et le diagnostic de nodules en différentes tâches. Le système de Google remplit ces deux fonctions, en ciblant les régions d’intérêt dans un scan et en fournissant un score de risque indiquant si les nodules d’un patient sont cancéreux.

Le système utilise des réseaux de neurones convolutifs, un type d’architecture d’intelligence artificielle, pour comprendre les caractéristiques de la malignité et indiquer les zones problématiques en analysant des tomodensitogrammes en trois dimensions. Cette tâche est difficile et prend beaucoup de temps pour les radiologues, car ils ne peuvent pas examiner les balayages tridimensionnels comme un ordinateur. Ils doivent examiner des centaines de tranches individuelles de l’analyse pour se former une opinion. Mais le système proposé peut balayer toutes les dimensions très rapidement.

Les auteurs ont indiqué que les performances du système restaient cohérentes lorsqu’il était exposé à des patients extérieurs au jeu de données NIH sur lequel il avait été formé. Le système a examiné les analyses de 1 700 patients du Northwestern Memorial HealthCare à Chicago et a produit des résultats similaires en classant les nodules et en établissant des diagnostics.

Selon les experts, le logiciel Google pourrait être particulièrement utile pour les radiologues généraux dans les hôpitaux. La plupart d’entre eux n’ont pas l’expertise des radiologues thoraciques spécialisés dans les troubles pulmonaires et ceux-ci travaillent essentiellement dans les grands centres médicaux universitaires, ce qui les rend peu accessibles pour le monde rural.


Please, help us continue to provide valuable information: