Des annonces de médicaments révolutionnaires, mais qui ne se concrétisent jamais? Ces annonces fracassantes sont-elles avérées? Chaque semaine une équipe de recherche annonce avoir fait une découverte qui va bouleverser le traitement du cancer. Il est nécessaire d’appeler nos lecteurs à la prudence, cet article a pour but de donner des éléments pour évaluer le vocabulaire dithyrambique et les motivations réelles du monde médical et pharmaceutique derrière ces annonces fracassantes de « révolutions dans les traitements ».

Prenons l’exemple des progrès actuels de l’immunothérapie dans la lutte contre le cancer. La presse et les médias nous inondent d'articles clamant que l'immunothérapie révolutionne réellement le traitement du cancer du poumon à un stade métastatique. Cela arrive après des décennies où on nous a vanté successivement la chimiothérapie, les thérapies ciblés, la médecine personnalisée avec la génétique,

Cependant, ces «révolutions» signifient que la survie à 5 ans s'améliore de 10-15% en valeur absolue. Ce n'est pas exceptionnel, cela veut dire que cela ne bénéficiera pas à 8 personnes sur dix. Alors pourquoi qualifier un traitement de révolutionnaire?

A ce jour, la fraction de patients guéris du cancer par immunothérapie est malheureusement très faible. Quand le nombre de survivants après un an est d'environ 10%, une amélioration de 10% du nombre de survivants, signifie que deux fois plus de personnes vont pouvoir en bénéficier, ce qui est mis en avant par le monde médical, le corrolaire étant que 80% des malades ne peuvent en bénéficier. Dans 50% des cas de survivants à un an, l'immunothérapie n'apportera cependant aucune amélioration, pour 25% des cas, cela apportera une amélioration notable mais faible. C'est seulement environ 25% des cas de survivants à un an qui verront une réponse forte, soit un patient sur 20.

Mais même avec l'immunothérapie, ces 25% de patients ne seront pas guéris. Ils vivront plus longtemps que lorsqu'ils sont traités avec de la chimiothérapie. Est-ce que les chanceux ajouteront des mois ou des années à leurs vies? Nous ne savons pas. À ce jour, il est trop tôt pour le dire.

Le cancer, un business florissant?

Contrairement à ce qui est affirmé haut et fort par le corps médical, celui-ci est soumis à très peu de supervision en France. Les gouvernements successifs se heurtent à une résistance extrême et incompréhensible pour le citoyen ordinaire, pour imposer un minimum de traçabilité des actes médicaux, par exemple il s'est écoulé 14 ans entre la publication de la loi et la généralisation du dossier médical numérique. Tout juste les hôpitaux peuvent-ils être contrôlés à posteriori par les Agences Régionales de Santé. Plus de rigueur est perçu comme étant insupportable. Nous quidams ordinaires devrions être satisfait d'avoir le meilleur système de santé du monde. Ce qui est une affirmation parfaitement farfelue, la France a toujours été à la traîne des États-Unis sur les grands sujets médicaux et dans ce domaine comme dans d'autres, les normes de la commission Européenne sont celles de l'état Européen le moins disant. De plus les statistiques montrent des anomalies sérieuses en matière de straitement du cancer. Le taux de survie en Europe de l'Ouest, une région relativement homogène, peut augmenter de 50% pour certaines pathologies si l'on passe une frontière, mais diminuer dans la même proportion pour d'autres pathologies. En France la mortalitée est deux fois plus élevée dans un hôpital local que dans un centre anti-cancéreux régional. Cela semble difficile à comprendre alors que l'industrie pharmaceutique est largement mondialisée. On dirait qu'il y a une grande disparité dans la pratique médicale.

Il est aisé de dénoncer les prix des traitements anti-cancéreux les plus récents, mais la cupidité n'est pas le propre de l'industrie pharmaceutique : s’il est facile de dénoncer les prix d'une entreprise mondiale, comment connaître le niveau de marge d'un médecin ou d’un hôpital local? Surtout dans un contexte de financement à l’acte par la sécurité sociale, qui suggère une inflation forte des prix.

Un hôpital et ses équipes ont intérêt à appliquer les traitements les plus coûteux possibles.

Une technique de narration accomplie

L'immunothérapie bénéficie d'une narration "romantique", qui aide à marqueter ces médicaments mais aussi ses spécialistes, comme aucun autre médicament n’a pu en bénéficier. Les médias se donnent à cœur joie pour vous expliquer que "C'est votre armée personnelle, votre système immunitaire, qui va attaquer la plus terrible de toutes les maladies; le cancer".

L'effort de marketing porte aujourd'hui sur les immunothérapies, mais les immunothérapies montrent leurs limites de façon de plus en plus évidentes, bientôt ce sera d'autres techniques qui seront présentées comme révolutionnaires.

Quid de la recherche dans les pays émergents?

L'application de l'immunothérapie à la lutte contre le cancer n'est pas nouvelle, elle était déjà pratiquée dans certains pays dans les années 1980. Elle a été cependant rendue illégale dans beaucoup de pays, car elle avait entrainé un certain nombre de désastres.

En 1988, Greg Winter et son équipe ont été les pionniers des techniques d'humanisation des anticorps monoclonaux, éliminant les réactions provoquées par de nombreux anticorps monoclonaux chez certains patients.

Le Centre d'immunologie moléculaire de La Havane, Cuba (CIM) et des chercheurs Argentins ont élaboré un vaccin (racotumomab) contre le cancer dans les années 2000 sans que le monde occidental n'y prête attention à cause de l'embargo. Un vaccin d’immunothérapie coûte, dans le monde occidental, des milliers de fois plus cher que le racotumomab !

Ce médicament a terminé une étude de phase II en 2014 (limitée à 71 patients), qui ajoute environ 5 mois de vie au groupe témoin (11 mois contre 6 mois). Ensuite, une vaste étude internationale de phase III sur les NSCLC (poumon) a été lancée. Il est approuvé pour utilisation à Cuba et en Argentine. Le racotumomab n'est pas un vaccin dans le sens ordinaire, mais bien un traitement d'immunothérapie.

Vous pouvez discuter de ce thème dans notre forum dédié

Foire aux questions

Intermittent usage of cancer drugs

- Posted in English by

Researchers have already advocated intermittent treatments, either to provide a respite for example in the treatment of prostate cancer, or because models of cell ecology show the interest of pre-empting the development of the mutations of resistance.

Selumetinib, an experimental inhibitor of MEK 1/2 from AstraZeneca, has experienced numerous failures in its trials, including the most recent in non-small cell lung cancer (NSCLC) with KRAS mutation and thyroid cancer.

Despite this series of failures, selumetinib is still being tested in different types of cancer, both as monotherapy and in combination with checkpoint inhibitor drugs.

Nevertheless, the development of resistance has proven to be a problem with drugs that inhibit MEK and associated pathways. But the company is trying to turn these failures into opportunities by partnering with researchers at the Babraham Institute in the UK to figure out how cancer cells become resistant to treatment.

By studying the cellular signaling pathway that selumetinib was supposed to disrupt, the AZ-Babraham joint team discovered that the cancer cells were developing a bypass strategy to avoid the effects of the drug, but that this strategy was destroying the cancer cells when the drug was no longer applied.

The researchers made this discovery by exposing human colon cancer cells to selumetinib for several weeks. After a while, they became resistant to selumetinib by amplifying a gene called BRAF. This allowed them to maintain the production of growth factors.

But once the drug was removed, BRAF amplification became an obstacle, activating a pathway that caused rapid cancer cell cell aging. Apparently the amplification is not reversible and cells that do not have this mutation have a competitive advantage over cancer cells.

The researchers found that these cells were then susceptible to a second attack of selumetinib. They believe their findings would be applicable to melanoma and other cancers, they said.

Although in-vitro studies are rarely transposable to living beings, studies in mice have shown that intermittent administration can prolong the tumor's reduction effects of the drug.

It should be noted, however, that the mice had undergone xeno-grafting and therefore were not mice that would be models of the target cancer. Researchers believe that knowledge about resistance resistance should inform future dosing schedules.

They published their findings in the journal Nature Communications.

"Our results provide a clear rationale for intermittent drug therapy, to delay or defeat emerging resistance," they wrote in the study.

Des chercheurs se sont déjà fait l'avocat de traitements intermittents, soient pour apporter un répit par exemple dans le traitement du cancer de la prostate, soit parce que des modèles d'écologie cellulaires montrent l'intérêt de devancer le développement des mutations de résistance.

Le sélumétinib, un inhibiteur expérimental de MEK 1/2 d’AstraZeneca, a enregistré de nombreux échecs dans ses essais, dont les plus récents dans les cancers du poumon non à petites cellules (CBNPC) à mutation KRAS et le cancer de la thyroïde.

Malgré cette série d'échecs, le sélumétinib fait toujours l'objet de tests dans différents types de cancers, à la fois en monothérapie et en association avec des médicaments inhibiteurs de point de contrôle.

Néanmoins, le développement d'une résistance s'est révélée être un problème avec les médicaments qui inhibent la MEK et les voies associées. Mais la société essaye de transformer ces échecs en opportunités en s'associant avec des chercheurs de l'Institut Babraham au Royaume-Uni pour tenter de déterminer comment les cellules cancéreuses deviennent résistantes au traitement.

En étudiant la voie de signalisation cellulaire que le sélumétinib était censée perturber, l’équipe commune AZ-Babraham a découvert que les cellules cancéreuses développaient une stratégie de contournement pour éviter les effets du médicament, mais que cette stratégie détruisait les cellules cancéreuses lorsque le médicament n'était plus appliqué.

Les chercheurs ont fait cette découverte en exposant les cellules cancéreuses du côlon humain au sélumétinib pendant plusieurs semaines. Àu bout d'un certain temps, elles sont devenues résistantes au sélumétinib en amplifiant un gène appelé BRAF. Cela leur a permis de maintenir la production de facteurs de croissance.

Mais une fois que le médicament a été retiré, l'amplification de BRAF est devenue un obstacle, activant une voie qui a provoqué le vieillissement (arrêt du cycle cellulaire) rapide des cellules cancéreuses. Apparemment l'amplification n'est pas réversible et les cellules qui n'ont pas cette mutation disposent d'un avantage compétitif sur les cellules cancéreuses.

Les chercheurs ont découvert que ces cellules étaient ensuite sensibles à une seconde attaque de sélumétinib. Ils pensent que leurs découvertes seraient applicables au mélanome et à d'autres cancers, ont-ils déclaré.

Bien que les études in-vitro soient rarement transposables aux êtres vivants, des études chez la souris ont montré que l’administration intermittente pouvait prolonger les effets de réduction de la tumeur du médicament.

Il convient cependant de noter que les souris avaient été l'objet d'une xeno-greffe et donc qu'il ne s'agit pas de souris qui seraient des modèles du cancer cible. Les chercheurs pensent que les connaissances acquises sur la résistance de la résistance devraient éclairer les schémas posologiques à venir.

Ils ont publié leurs conclusions dans la revue Nature Communications.

"Nos résultats fournissent une justification claire pour le traitement intermittent de médicaments, pour retarder ou vaincre la résistance émergente", ont-ils écrit dans l'étude.

About 80% of lung cancers are non-small cell lung cancers (NSCLC / NSCLC) and about 15 to 20% of these cells carry epidermal growth factor receptor (EGFR) activating mutations.

The treatment of EGFR mutant CPNPC has improved considerably with the introduction of EGFR tyrosine kinase inhibitors (TKIs). Several TKIs targeting this receptor have been developed, including the first generation EGFR TKI, gefitinib (Iressa) and erlotinib (Tarceva).

Although EGFR-mutated NSCLC patients derive substantial benefits from EGFR TKI, their disease tends to evolve within a year because tumors eventually develop resistance to treatment.

Second-generation TKI EGFR includes afatinib (Gilotrif) and dacomitinib (Vizimpro), as well as third-generation neratinib and EGFR TKIs, including osimertinib (Tagrisso), and experimental therapeutics. like olmutinib and nazartinib.

The most common activating EGFR mutations in NSCLC include the deletion of exon 19 and L858R. Patients whose tumors harbor these EGFR-activating mutations are treated with first-generation EGFR TKIs. Although most patients initially responded to these treatments, more than 60% of them develop resistance by acquiring the "gatekeeper" point mutation, T790M.

Third-generation inhibitors, such as osimertinib, have been developed to target T790M mutations and to be active against the suppression of the original exon 19 and L858R. However, patients also develop resistance to this treatment, through alternative bridging mechanisms, as described in the table below.

enter image description here

The targeted treatment of lung cancer patients with EGFR mutations consisted solely of monotherapy with various EGFR tyrosine kinase inhibitors, although we have known for more than 10 years that cancers resistant to EGFR TKIs result from activation of the MET bypass pathway.

Resistance acquired by amplification of MET as a derivation pathway is observed in approximately 5 to 10% of patients whose disease progresses after treatment with first- or second-generation EGFR-TKI and in approximately 25% of those whose disease progresses after TKI treatment of third-generation EGFR. The resistance induced by the MET confers a more aggressive behavior to cancers with EGFR mutants.

Combination of osimertinib and savolitinib

A combination of osimertinib and savolitinib, a MET inhibitor, was tested in a first cohort of patients with EGFR mutant lung cancer with acquired resistance induced by MET amplification after ITK therapy. first or second generation EGFR. Patient tumors were also negative for the T790M mutation.

In the second cohort, the same combination was tested in patients with EGFR-mutant lung cancer with acquired resistance induced by MET metabolism enhancement following treatment with osimertinib or another third-generation experimental TKI. EGFR.

The goal sought through the study of patients who received previous first-generation and second-generation EGFR-TKIs and those who had previously received previous third generation EGFR-TKIs in two separate cohorts was to provide more accurate assessments of combined treatment in these two distinct groups of patients.

For the cohort of patients who have previously received first- or second-generation EGFR-TKI, treatment with the osimertinib-savolitinib combination covers both the current dominant resistance mutation (based on MET amplification) and a likely future mutation resistance (based on T790m). "In this branch, we hypothesized that the response rate would be high," Sequist said in an interview.

enter image description here

On the other hand, in the cohort of patients who have already received third-generation EGFR-TKIs (osimertinib or one of the other third-generation EGFR experimental TKIs), their cancer probably acquired resistance via T790M after treatment with TKI EGFR generation, and following treatment with a third-generation EGFR TFR covering T790M, a second mutation driven by MET amplification appeared, distinguishing their disease from that of the first cohort.

In the cohort of 46 patients who had previously received a first- or second-generation EGFR TKA, savolitinib-treated osimertinib treatment yielded an objective response rate (ORR) of 52%, with 24 partial responses (PR). ). The median duration of response (DOR) was 7.1 months.

In the cohort of 48 patients who received a third-generation EGFR TKI, savolitinib-treated osimertinib treatment resulted in a ROP of 28%, with 12 RPs. The median DOR was 9.7 months.

"This discovery illustrates the value of careful patient selection in targeted therapy studies," said Sequist, adding, "These clinically significant responses also demonstrate that, as different heterogeneous mutation resistance appear, they can their turn to be controlled by adapting the therapy. "

Few people reach the age of 80 without a kind of neuropathology developing in their brains, and multi-pathology is the norm. Neuropathologists commonly observe cytoplasmic inclusions of phosphorylated TDP-43 in post-mortem brain samples with or without Aβ plaques and neurofibrillary tangles that define Alzheimer's disease.

enter image description here

Inclusions containing this RNA binding protein were first implicated in ALS and FTD more than 10 years ago. Shortly after, neuropathologists identified the TDP-43 pathology in people who had symptoms of Alzheimer's disease, not FTD (Amador-Ortiz et al., 2007). It often accompanied the hippocampal sclerosis, a disease characterized by a narrowed hippocampus ravaged by gliosis. More than a decade ago, Dickson had described curious cases of hippocampal sclerosis in people with dementia without the pathology of Alzheimer's disease (Dickson et al., 1994).

Researchers now suspect that many of these cases, as well as more recent cases, were caused by TDP-43 proteinopathy.

Over the last ten years, several studies have described the clinical and pathological evolution of this TDP-43 proteinopathy, recently called LATE. A study of TDP-43 in post-mortem brain samples of nearly 1,000 deceased participants in the Rush Memory and Aging Project and RUD-MAP (ROS-MAP) project (James et al. , 2016). Half of the participants had TDP-43 pathology and 37% had both TDP-43 and Alzheimer's disease. People with both conditions were more likely to have clinical dementia than those with only one condition. This study proposed a pathological staging pattern, in which the pathology TDP-43 reached the amygdala at stage 1, then the hippocampus and cortex entorhinal at stage 2, and finally the neocortex stage at 3. Once the pathology extends beyond the amygdala, it correlates well with cognitive impairment.

LATE is a proposal for a new common neurodegenerative disease, which has been named so by an international group of pathologists, clinicians and epidemiologists in a consensus report published April 30 in the Brain journal.

This international group predicts that this disease is a clinical diagnosis of Alzheimer's disease over five diagnosis. In their article, written after a workshop in Atlanta last fall, Peter Nelson's researchers at the University of Kentucky at Lexington summarized the decades of research that preceded the term. They describe the characteristics of LATE, propose ways to classify and diagnose it, and call for the development of specific biomarkers and therapies.

A typical case of predominantly age-related TDP-43 encephalopathy in limbic (LATE), would be that of an 86-year-old woman who would develop classic amnesic symptoms of Alzheimer's disease in her last years of life, but at autopsy, his brain would only carry a modest burden of Aβ plates and tau entanglement. Instead, the inclusions of TDP-43 would have invaded its limbic regions.

The LATE pathology often coincides with the hippocampal sclerosis, but the latter is not necessary for a diagnosis.

How often is LATE? ROSMAP researchers, led by Rush's Julie Schneider, analyzed their cohort data again to take into account the proposed neuropathological staging. They estimate the impact of LATE at about half that of Alzheimer's disease in the elderly and equal to the combined impact of all vascular neuropathologies. This would make LATE about 100 times more widespread than the FTD.

enter image description here

The co-occurrence of Alzheimer's disease and LATE neuropathologies in older people complicates the interpretation of therapeutic trials specific to Alzheimer's disease and may even mask positive results, Nelson noted.

The question is: what is the usefulness of introducing a new definite disease that can be diagnosed so far only through post-mortem neuropathological findings?

How will researchers differentiate the proposed new disease from Alzheimer's disease? There are no fluid biomarkers or PET tracers to detect the pathology of TDP-43, although researchers are interested. The intracellular localization of TDP-43 and its low pathological burden complicate the development of biomarkers. For the moment, the best the diagnoser can do is to go through a process of elimination.

Once biomarkers exist, they will facilitate targeted drug discovery efforts on LATE, for example on its TDP-43 aggregates. Given that comorbid neuropathologies in LATE at risk could potentially interact (Robinson et al., 2018), Trojanowski has proposed an immunotherapeutic cocktail of antibodies to Aβ, tau, TDP-43 and α-synuclein.

Is it possible that a medication treating congestive heart failure can improve the breathing of people with ALS? Or that a drug used to treat cancer could reduce motor neuron inflammation and possibly slow the progression of the disease?

The reuse of drugs is not a new idea. Many drugs have found a new function - for example tamoxifen, originally developed to treat breast cancer, is now used in the treatment of bipolar disorder.

So, how can a medicine that treats a disease, act for another disease?

Obviously, once a drug enters the body, we have little control over its delivery. Although it can be designed to treat, for example, kidney cells, it also travels and interacts in other places. It is these "non-targeted" effects that cause the side effects of drugs. Sometimes, however, this disruption can have positive effects and it is these beneficial results that drug reuse attempts to exploit.

However, we can not take an approved medicine and give it to people with another disease simply because we think it could work for them. Pre-clinical tests and clinical trials are still needed. A safe dose must be established for the new therapeutic target, a certain degree of efficacy must be established, and we need to understand the benefits and risks before the drug can be made available as a new treatment.

MIROCALS - IL-2: From cancer treatment to motor neuron protection

This trial tests interleukin-2 (IL-2), a drug already used to treat some forms of cancer. IL-2 is naturally produced by the body. Its main role is to promote the production of regulatory T cells (or Tregs) - a part of the immune system that is thought to play a role in protecting nerve cells from damage. IL-2 can increase blood levels of Treg and could protect motor neurons in ALS, slowing the progression of the disease.

Studies have already identified the lowest dose of IL-2 that still triggers an increase in Treg without serious side effects.

The goal of this phase 2 trial is to evaluate the safety and efficacy of IL-2 and to confirm that altering the immune response by increasing the Treg rate will slow down the progression of ALS. The study will recruit 216 participants and the results are expected in autumn 2021.

TUDCA - a treatment for liver disease that could protect motor neurons from programmed cell death

Tauroursodeoxycholic acid (TUDCA) is a bile acid. Bears contain large amounts of TUDCA in their bile.

TUDCA prevents apoptosis of cells through its inhibitory role in the transport of BAX to mitochondria.

TUDCA is a water-soluble bile salt used in the treatment of cholestasis, a liver disease in which bile acid accumulates in an unhealthy liver, damaging cells by destroying membranes and signaling cell death. TUDCA also appears to reduce the stress of the endoplasmic reticulum (ER), an organelle of the cell that facilitates the folding of proteins. By reducing the stress of the endoplasmic reticulum, TUDCA can protect against neurological damage.

The aim of this phase 3 trial is to evaluate the safety and efficacy of TUDCA as a complementary therapy to riluzole, as measured by ALSFRS-R scores, in 440 people with ALS. complete in the summer of 2022. The ALSFRS-R is used to assess and monitor functional changes in a person with ALS over time. It consists of 12 questions that deal with aspects of the person's daily life, each of which is rated by the person from 4 to 0, with 4 being "normal".

You can find out more about the TUDCA clinical trial on the TUDCA website and on clinicaltrials.gov.

Perampanel - antiepileptic drug that could prevent the toxic accumulation of TDP-43

It was the first antiepileptic drug in the class of selective noncompetitive AMPA receptor antagonists. This medication can lead to serious psychiatric and behavioral changes; it can cause homicidal or suicidal thoughts. In a mouse model of ALS, Perampanel has been shown to prevent motor neuron death by stopping the toxic accumulation of TDP-43 protein. Long-term Perampanel therapy also resulted in a visible improvement in motor function in treated mice.

The aim of this phase 2 trial is to evaluate the effect of Perampanel on disease progression (measured by ALSFRS-R) in 60 people with sporadic ALS. The results are expected for the winter of 2022. To learn more about this trial, go to clinicaltrials.gov.

Ranolazine - the drug against angina pectoris that can be neuroprotective

Used to treat angina pectoris (chest pain), ranolazine works by inhibiting the accumulation of sodium and calcium ions in cells, although the way it treats angina is not fully understood. Calcium ions play an important role in hyperexcitability when neurons "trigger" more than they would normally, causing fasciculations (muscle contractions), one of the first symptoms of ALS. Ranolazine may have a neuroprotective effect by reducing neuronal hyperexcitability, thereby slowing the progression of the disease and reducing the frequency of cramps.

The Phase 2 trial will evaluate the safety and efficacy of ranolazine in 20 people with ALS and is expected to be completed in the summer of 2019. For more information, see clinicaltrials.gov.

Pimozide - an antipsychotic that could improve muscle function

Pimozide is used in the treatment of schizophrenia and in the reduction of uncontrolled muscle tics associated with Tourette's syndrome. It works by decreasing the activity of dopamine, a neurotransmitter that sends messages between brain cells. In people with ALS, motor neuron damage results in disruption of communication between neurons and muscles at the neuromuscular junction (NMJ). Pimozide has been shown to improve communication with NMJ in mice and fish for the purpose of improving muscle function.

This phase 2 study will examine whether pimozide can help slow the progression of ALS in 100 people with the disease. The trial should be completed by the end of 2019 and you can find out more on clinicaltrials.gov.

Rapamycin - the anti-rejection drug that can prevent neurodegeneration

Used to prevent rejection of transplanted organs, rapamycin works by weakening the body's immune system to accept transplanted organs more easily. The neuron's inability to eliminate the accumulation of proteins in the cytoplasm, and an imbalanced function of the immune system that damages motor neurons by neurotoxicity rather than protecting them, are two potential influences in the development of ALS. These two mechanisms represent important therapeutic targets. In neurodegeneration models, rapamycin has been shown to suppress inflammatory neurotoxic responses caused by T cells (T cells are part of the immune system and generally protect nerve cells from damage) and aid in protein breakdown. accumulated in the cytoplasm.

The goal of this phase 2 trial, which will involve 63 people with ALS, is to obtain predictive information for a larger study. Its completion is scheduled for autumn 2019. For more information, see clinicaltrials.gov.

Acellular systems rapidly develop the potential of synthetic biology, opening the way for a new wave of applications in living organisms.

When engineering an organism, most laboratories synthesize genes, insert them into cells, and see if the desired effect occurs. There are many limitations to this approach. The process can be time consuming and often the genes do not work as expected. As a result, many in the field now view cell-free systems - an in vitro tool for studying biology - as an easily accessible approach for prototype genes before they are inserted into a living cell. Cell-free systems have some crucial advantages over living organisms and can be made from whole cell extracts or individually purified components, such as PURE.

Cell-free systems can be used to produce toxins in high yields, unlike living cells, and components can generally be added or removed without consequence, while the deletion in vivo of an protein could kill the cell.

Protein Production 2.0: Unblock unnatural chemicals

But then many still do not see the potential of cell-free systems: It's an incredibly powerful approach to dissecting complex biological problems. Synthetic biology laboratories now exploit acellular systems to produce proteins with unnatural chemical properties, to create prototypes of metabolic pathways and even to detect biomolecules of clinical importance in just a few minutes.

Cell-free systems have long been used to produce natural proteins because the preparation of an extract takes only a few days and toxic proteins can be produced while the chemical environment is tightly controlled. But some laboratories are looking beyond the production of natural proteins.

In living organisms, unnatural amino acids are usually incorporated into proteins with a method called Stop Codon Suppression. In this method, a rarely used stop codon, typically UAG, is reaffected to produce another protein. In this way, an orthogonal tRNA that recognizes UAG can be expressed, but instead of signaling the translation to stop, it incorporates an unnatural amino acid. More than 100 unnatural amino acids have been incorporated into proteins using this approach 3.

Compared to living cells, acellular systems have a higher tolerance to toxicity caused by unnatural components, no cellular membrane barrier limits the transport of unnatural amino acids, more flexible control of the reaction is possible by freely adjusting the composition of the system and there is a higher incorporation efficiency non-natural amino acids.

Beyond Protein Production: Acellular Systems for Prototyping Lanes

While synthetic biologists adopt acellular systems to produce proteins that are decorated with unnatural amino acids, others are eagerly applying new capabilities to simultaneously probe tens of interacting proteins.

Acellular systems are more than a prototyping tool of autonomous genetic parts.

These are tools to test entire metabolic pathways. By creating numerous cell extracts, each with only a portion of the expressed pathway, it is possible to transform cell-free systems into a modular system that can be used to assemble any desired pathway in vitro. This smart approach, combined with automation and machine learning, could dramatically accelerate the way scientists test combinations of metabolic pathways. Nevertheless, there are fundamental limitations to our ability to apply the results of cell-free systems to living organisms.

Sensors on demand

The abundance of data allowed by this approach even allows us to go beyond the metabolic pathways; this could also be useful for the creation of acellular systems for the clinical biosonde.

The cells constantly detect their environment, react to the signals and act with caution. It follows naturally that the brilliant reactivity and programmability of biology could then be used to detect molecules of clinical importance for humans.

Cell-free systems have been developed for biosensing applications, with the goal of accurately diagnosing disease in minutes rather than hours.

Biosensors have focused on the application of acellular systems to design genetically encoded biosensors that measure biomarkers in clinically relevant samples. Although many models of biosensors work in the laboratory, few have been tested on real clinical specimens.

The reason that cell-free systems are preferable to living systems [as biosensors] in some contexts is that tests are economical, fast, quantitative, scalable and automated, and reproducible. They also offer advantages for biocapture in that they can be lyophilized on surfaces such as paper, they are not genetically modified organisms and are therefore more acceptable for use in clinical and field environments.

In the coming years, cell-free systems will be increasingly used in the clinic, especially in situations where a rapid pre-test is desirable.

A more distant future without cells

Yuan Lu, for example, is considering the use of cell-free systems in areas other than biology. "For this to happen, cell-free systems can not simply focus on biological transcription and translation," he says. "To achieve revolutionary development, cell-free systems must be strongly integrated with materials science, neuroscience, electronic engineering, 3D printing, artificial intelligence and other next-generation technologies. . "

Ashty Karim believes that cell-free systems will be increasingly used for "direct-to-use" applications. "We will begin to look at cell-free sensors as diagnostics in agriculture, defense and medicine, and we will see on-demand biofabrication of therapies, vaccines and commodities," she said. he said, pointing out that these advances are made possible by improvements in cell-free preparations and mixtures, such as "cell-free systems that can glycosylate proteins and cell-free systems containing orthogonal transcription factors".

The most ambitious application of cell-free systems, exemplified by the Build-a-Cell Consortium, aims to build a minimal synthetic cell from scratch. According to Paul Freemont, a member of the consortium, this effort will be facilitated by cell-free systems. He explains, "If we build a series of modules that mimic various aspects of living systems [in cell-free systems] like motility, detection and regulation, then the real challenge will be how to interface these different modules to produce a more complex synthetic cell. ".

Les systèmes acellulaires développent rapidement le potentiel de la biologie synthétique, ouvrant la voie à une vague d’applications dans les organismes vivants.

Lors de l’ingénierie d’un organisme, la plupart des laboratoires synthétisent des gènes, les insèrent dans des cellules et voient si l’effet souhaité se produit. Il existe de nombreuses limites à cette approche. Le processus peut prendre beaucoup de temps et souvent, les gènes ne «fonctionnent» pas comme prévu. Par conséquent, nombreux sont ceux qui, sur le terrain, considèrent désormais les systèmes acellulaires — un outil in vitro pour étudier la biologie — comme une approche facilement accessible pour les gènes prototypes avant qu’ils ne soient insérés dans une cellule vivante. Les systèmes acellulaires possèdent certains avantages cruciaux par rapport aux organismes vivants et peuvent être fabriqués à partir d’extraits de cellules entières ou de composants purifiés individuellement, tels que le système PURE.

Les systèmes acellulaires peuvent être utilisés pour produire des toxines avec des rendements élevés, contrairement aux cellules vivantes, et des composants peuvent généralement être ajoutés ou supprimés sans conséquence, alors que la suppression d’une protéine in vivo pourrait tuer la cellule.

Production de protéines 2.0: débloquer des produits chimiques non naturels

Mais beaucoup ne voient pas encore tout le potentiel des systèmes sans cellules : C’est une approche incroyablement puissante pour disséquer des problèmes biologiques complexes. Des laboratoires de biologie synthétique exploitent désormais des systèmes acellulaires pour produire des protéines aux propriétés chimiques non naturelles, créer des prototypes de voies métaboliques et même détecter des biomolécules d’importance clinique en quelques minutes à peine.

Les systèmes acellulaires sont utilisés depuis longtemps pour produire des protéines, car la préparation d’un extrait ne prend que quelques jours et que des protéines toxiques peuvent être produites alors que l’environnement chimique est étroitement contrôlé. Mais certains laboratoires cherchent au-delà de la production de protéines naturelles.

Dans les organismes vivants, les acides aminés non naturels sont généralement incorporés dans les protéines avec une méthode appelée Stop Codon Suppression. Dans cette méthode un codon stop, typiquement un codon utilisé rarement, comme UAG, est réaffecté à la production d'une autre protéine. De cette manière, un ARNt orthogonal qui reconnaît UAG peut être exprimé, mais au lieu de signaler à la traduction de s’arrêter, il intègre un acide aminé non naturel. Plus de 100 acides aminés non naturels ont été incorporés dans des protéines en utilisant cette approche.

Par rapport aux cellules vivantes, les systèmes acellulaires ont une tolérance plus élevée à la toxicité causée par des composants non naturels, aucune barrière membranaire cellulaire ne limite le transport des acides aminés non naturels, un contrôle plus souple de la réaction est possible en ajustant librement la composition du système et il y a une efficacité d’incorporation plus élevée acides aminés non naturels.

Alors que les biologistes synthétiques adoptent des systèmes acellulaires pour produire des protéines décorées avec des acides aminés non naturels, d’autres appliquent avec empressement de nouvelles capacités pour sonder simultanément des dizaines de protéines en interaction.

Au-delà de la production de protéines: des systèmes acellulaires pour le prototypage de voies

Les systèmes acellulaires sont plus qu’un outil de prototypage de parties génétiques autonomes.

Ce sont des outils pour tester des voies métaboliques entières. En créant de nombreux extraits de cellules, chacun avec une seule partie de la voie exprimée, il est possible de transformer des systèmes sans cellules en un système modulaire pouvant être utilisé pour assembler toute voie désirée in vitro. Cette approche intelligente, associée à l’automatisation et à l’apprentissage automatique, pourrait accélérer considérablement la manière dont les scientifiques testent des combinaisons de voies métaboliques. Néanmoins, il existe des limites fondamentales à notre capacité d’appliquer les résultats de systèmes sans cellules à des organismes vivants.

Capteurs à la demande

L’abondance de données que permet cette approche permet même d’aller au-delà des voies métaboliques; cela pourrait également s’avérer utile pour la création de systèmes acellulaires pour la biosonde clinique.

Les cellules détectent constamment leur environnement, réagissent aux signaux et agissent avec précaution. Il s’ensuit naturellement que la brillante réactivité et la programmabilité de la biologie pourraient ensuite être mises à profit pour détecter des molécules d’importance clinique pour l’homme.

Des systèmes sans cellules ont été mis au point pour les applications de biodétection, dans le but de permettre de diagnostiquer avec précision les maladies en quelques minutes plutôt qu’en quelques heures.

Les biocapteurs se sont concentrés sur l’application de systèmes acellulaires pour concevoir des biocapteurs codés génétiquement qui mesurent des biomarqueurs dans des échantillons cliniquement pertinents. Bien que de nombreux modèles de biocapteurs fonctionnent en laboratoire, rares sont ceux qui ont été testés sur de vrais échantillons cliniques.

La raison pour laquelle les systèmes sans cellules sont préférables aux systèmes vivants [comme biosenseurs] dans certains contextes est que les tests sont économiques, rapides, quantitatifs, évolutifs et automatisés, et reproductibles. Ils offrent également des avantages pour la biocapture en ce sens qu’ils peuvent être lyophilisés sur des surfaces telles que le papier, ils ne sont pas des organismes génétiquement modifiés et sont donc plus acceptables pour une utilisation en environnement clinique et sur le terrain.

Dans les années à venir, des systèmes sans cellules seront de plus en plus utilisés en clinique, en particulier dans les situations où un test préliminaire rapide est souhaitable.

Un avenir plus éloigné sans cellules

Yuan Lu, par exemple, envisage l’utilisation de systèmes sans cellules dans d’autres domaines que la biologie. «Pour que cela se produise, les systèmes acellulaires ne peuvent pas simplement se concentrer sur la transcription et la traduction biologiques», dit-il. «Pour parvenir à un développement révolutionnaire, les systèmes sans cellules doivent être fortement intégrés à la science des matériaux, aux neurosciences, au génie électronique, à l’impression 3D, à l’intelligence artificielle et à d’autres technologies de la prochaine génération.»

Ashty Karim pense que les systèmes sans cellules seront de plus en plus utilisés pour des applications «à utilisation directe». «Nous commencerons à considérer les capteurs sans cellules comme des diagnostics dans les domaines de l’agriculture, de la défense et de la médecine, et nous verrons la biofabrication à la demande de thérapies, de vaccins et de produits de base», a-t-il déclaré, soulignant que ces progrès sont rendus possibles par des améliorations des extraits préparations et mélanges sans cellules, tels que «des systèmes sans cellules pouvant glycosyler des protéines et des systèmes sans cellules contenant des facteurs de transcription orthogonaux».

L’application la plus ambitieuse de systèmes sans cellules, illustrée par le consortium Build-a-Cell, vise à construire une cellule synthétique minimale à partir de rien. Selon Paul Freemont, un membre du consortium, cet effort sera facilité par des systèmes sans cellules. Il explique que «Si nous construisons une série de modules qui imitent divers aspects des systèmes vivants [dans les systèmes sans cellules] comme la motilité, la détection et la régulation, alors le véritable défi sera de savoir comment mettre en interface ces différents modules pour produire une cellule synthétique plus complexe. ".

Est-il possible qu'un médicament traitant l'insuffisance cardiaque congestive puisse améliorer la respiration des personnes atteintes de SLA? Ou qu'un médicament utilisé pour traiter le cancer pourrait réduire l'inflammation des motoneurones et éventuellement ralentir la progression de la maladie?

La réutilisation de médicaments n'est pas une idée nouvelle. De nombreux médicaments ont trouvé une nouvelle fonction - par exemple le tamoxifène, développé à l'origine pour traiter le cancer du sein, est maintenant utilisé dans le traitement du trouble bipolaire.

Alors, comment un médicament qui traite une maladie peut-il agir pour une autre maladie?

De toute évidence, une fois qu'un médicament pénètre dans l'organisme, nous avons peu de contrôle sur son acheminement. Bien qu'il puisse être conçu pour traiter, par exemple, les cellules du rein, il se rend et interagit également dans d'autres endroits. Ce sont ces effets "non ciblés" qui sont à l’origine des effets secondaires des médicaments. Parfois, cependant, cette perturbation peut avoir des effets positifs et ce sont ces résultats bénéfiques que la réutilisation de médicaments tente d’exploiter.

Cependant, nous ne pouvons pas prendre un médicament approuvé et le donner à des personnes atteintes d’une autre maladie simplement parce que nous pensons que cela pourrait fonctionner pour elles. Des tests pré-cliniques et des essais cliniques sont toujours nécessaires. Une dose sûre doit être établie pour la nouvelle cible thérapeutique, un certain degré d'efficacité doit être constaté et nous devons bien comprendre les avantages et les risques avant que le médicament puisse être rendu disponible en tant que nouveau traitement.

MIROCALS - IL-2: du traitement du cancer à la protection des motoneurones

Cet essai teste l'interleukine-2 (IL-2), un médicament déjà utilisé pour traiter certaines formes de cancer. L'IL-2 est produite naturellement par le corps. Son rôle principal est de promouvoir la production de cellules T régulatrices (ou Tregs) - une partie du système immunitaire censée jouer un rôle dans la protection des cellules nerveuses contre les dommages. Le médicament IL-2 peut augmenter les niveaux de Treg dans le sang et pourrait donc protéger les motoneurones dans la SLA, ralentissant ainsi la progression de la maladie.

Des études ont déjà identifié la dose la plus faible d’IL-2 qui déclenche toujours une augmentation des Treg sans effets secondaires graves.

Le but de cet essai de phase 2 est d’évaluer l’innocuité et l’efficacité de l’IL-2 et de confirmer que la modification de la réponse immunitaire par l’augmentation du taux de Treg ralentira la progression de la SLA. L’étude recrutera 216 participants et les résultats sont attendus à l’automne 2021.

TUDCA - un traitement pour une maladie du foie qui pourrait protéger les motoneurones de la mort cellulaire programmée

L'acide tauroursodésoxycholique (TUDCA) est un acide biliaire. Les ours contiennent de grandes quantités de TUDCA dans leur bile.

TUDCA prévient l'apoptose des cellules grâce à son rôle inhibiteur dans le transport de BAX vers les mitochondries.

TUDCA est un sel biliaire hydrosoluble utilisé dans le traitement de la cholestase, une maladie du foie dans laquelle l'acide biliaire s'accumule dans un foie malsain, endommageant les cellules en détruisant les membranes et en signalant la mort cellulaire. TUDCA semble également réduire le stress du réticulum endoplasmique (ER), un organite de la cellule qui facilite le repliement des protéines. En réduisant le stress du réticulum endoplasmique, TUDCA peut protéger contre les dommages neurologiques.

Le but de cet essai de phase 3 est d'évaluer l'innocuité et l'efficacité de TUDCA en tant que traitement complémentaire au riluzole, mesuré par l'amélioration des scores ALSFRS-R, chez 440 personnes atteintes de SLA et devrait s'achever à l'été 2022. L'ALSFRS -R est utilisé pour évaluer et surveiller les changements fonctionnels chez une personne atteinte de SLA au fil du temps. Il consiste en 12 questions qui traitent d’aspects de la vie quotidienne de la personne, chacune d’elles étant notée par la personne de 4 à 0, 4 étant «normales».

Vous pouvez en savoir plus sur l’essai clinique TUDCA sur le site Web de TUDCA et sur clinicaltrials.gov.

Perampanel - un antiépileptique qui pourrait prévenir l’accumulation toxique de TDP-43

Il s'agissait du premier médicament antiépileptique de la classe des antagonistes sélectifs non compétitifs des récepteurs AMPA. Ce médicament peut entraîner de sérieux changements psychiatriques et comportementaux; il peut provoquer des pensées homicidaires ou suicidaires. Dans un modèle murin de SLA, il a été prouvé que Perampanel empêchait la mort des motoneurones en stoppant l'accumulation toxique de la protéine TDP-43. Un traitement au Perampanel à long terme a également entraîné une amélioration visible de la fonction motrice chez les souris traitées.

Le but de cet essai de phase 2 est d'évaluer l'effet du Perampanel sur la progression de la maladie (mesuré par ALSFRS-R) chez 60 personnes atteintes de SLA sporadique. Les résultats sont attendus pour l'hiver 2022. Pour en savoir plus sur cet essai, allez sur clinicaltrials.gov.

Ranolazine - le médicament contre l'angine de poitrine qui peut être neuroprotecteur

Utilisée pour traiter l'angine de poitrine (douleur thoracique), la ranolazine agit en inhibant l'accumulation d'ions sodium et de calcium dans les cellules, bien que la manière dont cela traite l'angine ne soit pas entièrement comprise. Les ions calcium jouent un rôle important dans l'hyperexcitabilité lorsque les neurones «se déclenchent» plus qu'ils ne le feraient normalement, provoquant des fasciculations (contractions musculaires), l'un des premiers symptômes de la SLA. La ranolazine peut avoir un effet neuroprotecteur en réduisant l'hyperexcitabilité neuronale, ralentissant ainsi la progression de la maladie et en réduisant la fréquence des crampes.

L'essai de phase 2 évaluera l'innocuité et l'efficacité de la ranolazine chez 20 personnes atteintes de SLA et devrait s'achever à l'été 2019. Pour en savoir plus, consultez clinicaltrials.gov.

Pimozide - un antipsychotique qui pourrait améliorer la fonction musculaire

Le pimozide est utilisé dans le traitement de la schizophrénie et dans la réduction des tics musculaires incontrôlés associés au syndrome de Tourette. Il agit en diminuant l’activité de la dopamine, un neurotransmetteur qui permet d’envoyer des messages entre les cellules du cerveau. Chez les personnes atteintes de SLA, les dommages aux motoneurones entraînent une rupture de la communication entre les neurones et les muscles situés à la jonction neuromusculaire (NMJ). Il a été démontré que le pimozide améliore la communication au NMJ chez la souris et le poisson dans le but d'améliorer la fonction musculaire.

Cette étude de phase 2 examinera si le pimozide peut aider à ralentir la progression de la SLA chez 100 personnes atteintes de la maladie. L'essai devrait s'achever à la fin de 2019 et vous pouvez en savoir plus sur clinicaltrials.gov.

Rapamycine - le médicament anti-rejet qui peut prévenir la neurodégénérescence

Utilisée pour prévenir le rejet d’organes greffés, la rapamycine agit en affaiblissant le système immunitaire du corps pour l’accepter plus facilement. L’incapacité du neurone à éliminer l’accumulation de protéines dans le cytoplasme et une fonction déséquilibrée du système immunitaire qui endommage les neurones moteurs (neurotoxicité) plutôt qu'assurer leur protection sont deux influences potentielles dans le développement de la SLA. Ces deux mécanismes représentent des cibles thérapeutiques importantes. Dans des modèles de neurodégénérescence, il a été démontré que la rapamycine peut supprimer les réponses neurotoxiques inflammatoires provoquées par les cellules T (les cellules T font partie du système immunitaire et protègent généralement les cellules nerveuses contre les dommages) et aident à la dégradation des protéines accumulées dans le cytoplasme.

L'objectif de cet essai de phase 2, qui impliquera 63 personnes atteintes de SLA, est d'obtenir des informations prédictives pour une étude de plus grande envergure. Son achèvement est prévu pour l'automne 2019. Pour en savoir plus, consultez la page clinicaltrials.gov.

Peu de personnes atteignent l’âge de 80 ans sans qu’une sorte de neuropathologie ne se soit développée dans leur cerveau, et la multi-pathologie est la norme. Les neuropathologistes observent couramment des inclusions cytoplasmiques de TDP-43 phosphorylé dans des échantillons de cerveau post-mortem avec ou sans les plaques Aβ et les enchevêtrements neurofibrillaires qui définissent la maladie d'Alzheimer.

enter image description here

Les inclusions contenant cette protéine de liaison à l'ARN ont été impliquées pour la première fois dans la SLA et la FTD il y a plus de dix ans. Peu de temps après, des neuropathologistes ont repéré la pathologie TDP-43 chez des personnes qui avaient des symptômes de maladie d'Alzheimer, et non de FTD (Amador-Ortiz et al., 2007). Elle accompagnait souvent la sclérose de l'hippocampe, un hippocampe rétréci ravagé par la gliose. Plus d'une décennie auparavant, Dickson avait décrit des cas curieux de sclérose de l'hippocampe chez des personnes atteintes de démence sans pathologie de la maladie d'Alzheimer (Dickson et al., 1994).

Les chercheurs soupçonnent maintenant qu'une grande partie de ces cas, ainsi que des cas plus récent, étaient causés par une protéinopathie TDP-43.

Au cours des dix dernières années, plusieurs études ont décrit l’évolution clinique et pathologique de cette protéinopathie TDP-43, récemment baptisée LATE. On peut citer une étude sur TDP-43, dans des échantillons de cerveau post-mortem de près de 1 000 participants décédés, dans le cadre du projet Rush Memory and Aging Project et RUD-MAP (ROS-MAP) (James et al., 2016). La moitié des participants étaient atteints de la pathologie TDP-43 et 37% des participants étaient atteints à la fois de la pathologie TDP-43 et de la maladie d'Alzheimer. Les personnes ayant les deux pathologies étaient plus susceptibles d'être atteinte de démence clinique que celles qui étaient atteinte d'une seule pathologie. Cette étude proposait un schéma de stadification pathologique, dans lequel la pathologie TDP-43 atteignait l'amygdale au stade 1, puis l'hippocampe et le cortex entorhinal au stade 2, et enfin le néocortex au stade 3. Une fois que la pathologie s'étend au-delà de l'amygdale, elle se corrèle bien avec une déficience cognitive.

LATE est une proposition d'une nouvelle maladie neurodégénérative courante, qui a été baptisée ainsi par un groupe international de pathologistes, cliniciens et épidémiologistes dans un rapport de consensus publié le 30 avril dans Brain.

Ce groupe international prédit que cette maladie concerne un diagnostic clinique de maladie d'Alzheimer sur cinq. Dans leur article, rédigé à la suite d’un atelier tenu à Atlanta à l’automne dernier, les chercheurs de Peter Nelson, de l’Université du Kentucky à Lexington, ont résumé les décennies de recherche qui ont précédé l’appellation du terme. Ils décrivent les caractéristiques de LATE, proposent des moyens de la classer et de la diagnostiquer, et appellent au développement de biomarqueurs et de thérapies spécifiques.

Un cas typique d’encéphalopathie TDP-43 liée à l’âge prédominant dans le limbique (LATE), serait celui d'une femme de 86 ans qui développerait les symptômes amnésiques classiques de la maladie d’Alzheimer au cours de ses dernières années de vie, mais à l’autopsie, son cerveau ne porterait plus qu’un fardeau modeste de plaques Aβ et de tau enchevêtrement. Au lieu de cela, les inclusions de TDP-43 auraient envahi ses régions limbiques.

La pathologie LATE coïncide souvent avec la sclérose de l'hippocampe, mais cette dernière n'est pas nécessaire pour un diagnostic.

Quelle est la fréquence de LATE? Les chercheurs de ROSMAP, dirigés par Julie Schneider de Rush, ont analysé à nouveau les données de leur cohorte afin de prendre en compte la mise en scène neuropathologique proposée. Ils estiment l’impact du LATE à environ la moitié de celui de la maladie d'Alzheimer chez les personnes âgées et égal à l’impact combiné de toutes les neuropathologies vasculaires. Cela rendrait LATE environ 100 fois plus répandu que le FTD.

enter image description here

La co-occurrence des neuropathologies maladie d'Alzheimer et LATE chez les personnes âgées complique l'interprétation des essais thérapeutiques spécifiques à la maladie d'Alzheimer et peut même masquer des résultats positifs, a noté Nelson.

On peut se demander quelle est l'utilité de l'introduction d'une nouvelle maladie définie et pouvant être diagnostiquée jusqu'à présent uniquement grâce aux résultats neuropathologiques obtenus post mortem?

Comment les chercheurs vont-ils différencier la nouvelle maladie proposée de la maladie d'Alzheimer? Il n’existe pas de biomarqueurs de fluide ni de traceurs PET pour détecter la pathologie de TDP-43, bien que des chercheurs s’y intéressent. La localisation intracellulaire du TDP-43 et son faible fardeau pathologique compliquent le développement de biomarqueurs. Pour le moment, le mieux que le diagnostiqueur puisse faire est de suivre un processus d'élimination.

Une fois que les biomarqueurs existeront, ils faciliteront les efforts de découverte de médicaments ciblés sur LATE, par exemple sur ses agrégats de TDP-43. Étant donné que les neuropathologies comorbides chez les personnes à risque de LATE pourraient potentiellement interagir (Robinson et al., 2018), Trojanowski a proposé un cocktail immunothérapeutique d'anticorps dirigés contre Aβ, tau, TDP-43 et α-synucléine