Two epigenetic regulators interfere with healthy aging

- Posted by admin in English

It has long been assumed that lifespan and health are strongly correlated, but although there has been an overall increase in human life expectancy in recent decades, it is too often accompanied by deterioration of health.

A new study published on February 26 in Nature shows the influence of two epigenetic regulators on aging. Scientists led by Jie Yuan from the Chinese Academy of Sciences in Shanghai have studied the BAZ-2 and SET-6 proteins in Caenorhabditis elegans worms, which are orthologs of the human proteins BAZ2B and EHMT1.

Through genome-wide RNA-interference-based screening of genes that regulate behavioral deterioration in aging C. elegans, the researchers identified 59 genes as potential health modulators during aging. Essentially the proteins expressed by these genes, read and write epigenetic signals.

Among these modulators, they found that a neuronal epigenetic reader, BAZ-2, and a neuronal histone SET-6, accelerate the deterioration of the behavior of C. elegans by reducing the mitochondrial function, and repressing the expression of the encoded mitochondrial proteins. in the cell nucleus.

The researchers found that the levels of the two proteins increase with age in C. elegans and mice, which in turn attenuates the expression of genes involved in mitochondrial function.

BAZ-2 and SET-6 are complementary epigenetic mechanisms. SET-6 is an "epigenetic writer" and BAZ-2 is an "epigenetic reader" which recognizes modified histones and recruits transcriptional regulators.

Histones are proteins located in the nucleus of eukaryotic cells. They are the main protein components of chromosomes. They are closely associated with DNA and allow their compaction, but they also modify the expression of proteins by various epigenetic mechanisms known as the "histone code".

enter image description here Source Wikipedia.

How do BAZ-2 and SET-6 accelerate aging? The researchers found that the two proteins bind together to the promoter regions of more than 2,000 genes, and decrease their expression via methylation of histones. Among these target genes are many mitochondrial genes encoded nuclear. By suppressing the expression of these genes, BAZ-2 and SET-6 reduce oxygen consumption and ATP production, and decrease the critical stress responses that maintain mitochondrial proteostasis. The resulting metabolic slowdown discourages the worms from assimilating their food and they mate less.

This mechanism is conserved in the neurons of cultured mice and human cells. What about the orthologs of these epigenetic proteins in humans? A review of the databases shows that expression by human orthologs of the two proteins mentioned above, BAZ2B and EHMT1, increases with age and is positively correlated with the progression of Alzheimer's disease. Researchers have verified that ablation of BAZ-2 mouse ortholog Baz2b attenuates age-dependent body weight gain and prevents cognitive decline in aging mice.

enter image description here While wild-type mice grew fat with age, animals lacking both copies of the epigenetic reader Baz2b stayed trim, indicating improved mitochondrial function. [Yuan et al., Nature, 2020.]

However, it must be asked whether BAZ-2 and SET-6 would rather mediate age-related physiological adaptation, rather than the agents of aging itself. Indeed their action could reflect a mechanism of adaptation to a progressively more hostile biological environment.

Old Article 5

- Posted by system in English

Old Article 4

- Posted by system in English

Old Article 3

- Posted by system in English

Old Article 2

- Posted by system in English

Old Article 1

- Posted by system in English

Significance of the Topic:

The study of sensory processing in autism spectrum disorder (ASD) is crucial due to its impact on an individual's quality of life. Up to 95% of autistic individuals experience sensory processing differences, which can lead to difficulties in social interactions, communication, and daily functioning. Understanding the complex relationship between hyper- and hyporesponsivity to sensory stimuli in ASD can provide valuable insights into the neural mechanisms underlying this condition.

Importance:

The study's findings have significant implications for the diagnosis, management, and treatment of ASD. By acknowledging the co-occurrence of hyper- and hyporesponsivity, clinicians can develop more comprehensive and targeted interventions that address the individual's unique sensory processing needs. This can improve the quality of life for autistic individuals and their families.

Timeliness:

The study's focus on the complex relationship between sensory hyper- and hyporesponsivity in ASD is especially timely. Recent advances in neuroimaging and computational modeling have enabled researchers to better understand the neural mechanisms underlying sensory processing. This study contributes to the growing body of research in this area, providing new insights that can inform the development of effective treatments and interventions.

Relevance:

The study's findings have relevance beyond ASD, as they may also apply to a broader range of neurological, psychiatric, and developmental conditions characterized by sensory processing difficulties. The "Sensory Paradox" framework proposed by the study offers a new perspective on sensory processing, which can be applied to various conditions, including ADHD, anxiety disorders, and intellectual disabilities.

Analysis of the Text:

  1. Background: The study begins by establishing the significance of sensory processing in ASD, highlighting the prevalence and impact of sensory processing differences in autistic individuals.
  2. Methods: The researchers describe their methodology, which involves assessing sensory hyper- and hyporesponsivity in 3-4-year-old children with ASD and typically developing children.
  3. Findings: The study reports a positive correlation between sensory hyper- and hyporesponsivity within and across sensory modalities, which the researchers term the "Sensory Paradox."
  4. Interpretation: The study's authors interpret the findings in the context of previous literature, suggesting that the "Sensory Paradox" provides a new framework for understanding sensory processing in ASD and other neurodevelopmental disorders.
  5. Funding: The study acknowledges the funding agencies that supported the research, highlighting the importance of continued funding for autism research.
  6. Research in Context: The study provides an overview of the existing literature on sensory processing in ASD, highlighting the need for a more comprehensive understanding of this complex phenomenon.
  7. Added Value: The study emphasizes the novel finding of the positive correlation between sensory hyper- and hyporesponsivity, which offers a new perspective on sensory processing.
  8. Implications: The study's authors discuss the implications of their findings for the diagnosis, management, and treatment of ASD, as well as their potential relevance to other neurological, psychiatric, and developmental conditions.

Usefulness for Disease Management or Drug Discovery:

The study's findings have significant implications for the development of effective treatments and interventions for ASD. By understanding the complex relationship between sensory hyper- and hyporesponsivity, clinicians can develop more targeted and comprehensive approaches to addressing sensory processing difficulties. This can improve the quality of life for autistic individuals and their families.

Originality:

The study's finding of the positive correlation between sensory hyper- and hyporesponsivity is a novel contribution to the field. While previous studies have identified both hyper- and hyporesponsivity in ASD, the study's emphasis on the co-occurrence of these two phenomena offers a new perspective on sensory processing.

Comparison with the State of Art:

The study's findings are consistent with previous research on sensory processing in ASD, which has highlighted the complex and variable nature of sensory processing difficulties in this population. However, the study's emphasis on the positive correlation between sensory hyper- and hyporesponsivity offers a new framework for understanding sensory processing in ASD and other neurodevelopmental disorders.

Read the original article on medRxiv

Analysis of the Text: Significance, Importance, Timeliness, and Relevance

The text discusses the relationship between plasma glial fibrillary acidic protein (GFAP), a marker of astrocytic activation, and Alzheimer's disease (Alzheimer's disease) in cognitively unimpaired (CU) older adults. The significance of this topic lies in its potential to provide insights into the early detection and monitoring of Alzheimer's disease, a debilitating neurodegenerative disorder affecting millions worldwide.

Importance:

  1. Early detection and prevention: Identifying prognostic biomarkers like GFAP can facilitate early detection and intervention, potentially slowing or preventing cognitive decline.
  2. Personalized medicine: The observed sex-specific vulnerability highlights the importance of considering individual factors, such as sex, in Alzheimer's disease research and treatment.
  3. Development of targeted therapies: Understanding the relationship between GFAP and Alzheimer's disease can inform the development of novel therapeutic approaches targeting astrocytic activation.

Timeliness:

  1. Advancements in Alzheimer's disease research: The study contributes to the growing field of Alzheimer's disease research, which has seen significant progress in recent years.
  2. Emergence of biomarkers: The identification of plasma GFAP as a prognostic biomarker aligns with the increasing focus on developing reliable biomarkers for Alzheimer's disease.

Relevance:

  1. Clinical implications: The findings have implications for the clinical management of Alzheimer's disease, particularly in the early stages of the disease.
  2. Research applications: The study's results can inform future research on the mechanisms underlying Alzheimer's disease and the development of effective treatments.

Analysis of the Text: Relationship between Items

  1. Plasma GFAP: Elevated plasma GFAP is associated with lower cognitive performance, greater amyloid burden, and faster cognitive decline in CU older adults.
  2. Amyloid burden: Higher amyloid burden is linked to elevated GFAP, suggesting a relationship between astrocytic activation and amyloid accumulation in Alzheimer's disease.
  3. Cognitive decline: Plasma GFAP predicts faster cognitive decline, highlighting its potential as a prognostic biomarker for Alzheimer's disease.
  4. Sex-specific vulnerability: The study reveals stronger associations between GFAP and Alzheimer's disease-related outcomes in females, underscoring the importance of considering sex-specific factors in Alzheimer's disease research.

Usefulness for Disease Management and Drug Discovery:

The study provides valuable insights into the relationship between plasma GFAP and Alzheimer's disease, which can inform the development of novel therapeutic approaches targeting astrocytic activation. Elevated GFAP may serve as a prognostic biomarker for Alzheimer's disease, enabling early detection and intervention. The observed sex-specific vulnerability highlights the need to consider individual factors, such as sex, in Alzheimer's disease research and treatment.

Originality of the Text:

The study provides original information by:

  1. Identifying plasma GFAP as a prognostic biomarker: The study demonstrates the predictive value of plasma GFAP in CU older adults, offering a potential new tool for Alzheimer's disease research and diagnosis.
  2. Highlighting sex-specific vulnerability: The findings emphasize the importance of considering sex-specific factors in Alzheimer's disease research and treatment, which is a relatively unexplored area of study.
  3. Investigating longitudinal associations: The study's longitudinal design allows for a more comprehensive understanding of the relationships between plasma GFAP, cognitive decline, and Alzheimer's disease-related outcomes.

Read the original article on medRxiv

BackgroundFirstly, to determine whether iron-sensitive MRI measures mediate neuromelanin (NM) loss within the substantia nigra pars compacta (SNc) and its subregion, nigrosome-1 (N1) in idiopathic Parkinsons disease (iPD) and GBA-associated Parkinsons disease (GBA-PD) versus healthy controls (HC). Secondly, to assess the diagnostic value of NM-and iron MRI metrics, including their lateralisation.

MethodsEighty-six participants (HC=30, iPD = 30, GBA-PD = 26) underwent midbrain quantitative NM-MRI and susceptibility-weighted imaging (SWI). Contrast ratio (CR), normalised volume (nVol) and left-right asymmetry indices (AI) of SNc and N1 calculated. Receiver-operating analyses assessed group discrimination and onset-side prediction. Bidirectional causal mediation (5,000 bootstraps, FDR-corrected) tested Iron[->]NM[->]group and NM[->]Iron[->]group pathways. Moderation models examined the effect of GBA-mutation severity.

ResultsiPD and GBA-PD showed marked NM loss and increased iron in SNc/N1, being more prominent in GBA-PD. N1 NM metrics provided the strongest discrimination (HC vs GBA-PD AUC=0.93, HC vs iPD AUC=0.83), followed by iron measures (AUC=0.78-0.89). N1 NM asymmetry yielded moderate lateralisation accuracy (AUC=0.76). Cross-sectional mediation analyses identified significant Iron[->]NM[->]group effects across SNc and N1 (q<0.01), supporting mechanistic hypotheses of iron-driven NM depletion in PD. In GBA-PD, NM-iron coupling in N1 was influenced by mutation severity, suggesting a genotype-specific disruption of NM-iron homeostasis.

ConclusionsMulti-contrast MRI centered on N1 reveals an iron-driven NM imbalance that distinguishes PD from controls and it is modulated by GBA mutation severity, supporting the applicability of N1-focused NM-iron imaging as a biomarker for PD diagnosis.

Note: This manuscript has been submitted to Journal of Neurology, Neurosurgery & Psychiatry for consideration.

Read the original article on medRxiv

Significance, Importance, Timeliness, and Relevance

The topic of this text revolves around understanding the effects of stroke on reward processing and its implications for rehabilitation outcomes. This research is significant because it sheds light on the neural mechanisms underlying the limitations of traditional rehabilitation approaches in stroke survivors. The results of this study have important implications for the development of novel rehabilitation strategies that can compensate for impaired reward learning.

The study's importance lies in its potential to improve recovery outcomes and increase independence in stroke survivors. The fact that reward-based invigoration is preserved, while probabilistic reward-based learning is impaired, presents a translational opportunity to leverage motivational pathways to enhance rehabilitation intensity and compliance.

This topic is timely, as there is a growing recognition of the need to develop more effective rehabilitation approaches for stroke survivors. The increasing complexity of healthcare systems and the aging population have highlighted the importance of innovative strategies to improve recovery outcomes.

Analysis of the Text

The text presents a comprehensive study on the effects of stroke on reward processing in chronic stroke survivors. The researchers recruited 40 chronic stroke survivors and 30 age-matched healthy controls to complete a probabilistic reversal learning task. The study aimed to test two competing hypotheses: (1) a global impairment of reward processing leading to reduced invigoration and learning from feedback, and (2) selectively disrupted reward processing, where either invigoration or the ability to update beliefs from reward feedback is disproportionately affected.

The study found that stroke survivors showed reduced reward-based learning compared to controls, which was most pronounced when using the weak upper limb. Analysis using an established model of hierarchical Bayesian inference, the Hierarchical Gaussian Filter (HGF), revealed that stroke survivors were slower to update their beliefs about action-reward contingencies, while updating beliefs about environmental volatility remained intact. Reward-based invigoration was preserved, as strong trial-by-trial predictions about action-reward contingencies were associated with faster movement times.

Usefulness of the Text for Disease Management or Drug Discovery

This study has potential applications in disease management and drug discovery, particularly in the development of novel rehabilitation strategies for stroke survivors. The findings of this study highlight the importance of preserving motivational pathways in rehabilitation approaches and the need to develop adaptive feedback strategies that compensate for impaired reward learning.

The study's results could inform the development of more effective rehabilitation programs that incorporate motivational elements and adaptive feedback mechanisms. This could lead to improved recovery outcomes and increased independence in stroke survivors.

Originality of the Information

The study presents novel insights into the neural mechanisms underlying impaired reward learning in stroke survivors. The use of the Hierarchical Gaussian Filter (HGF) to analyze the data provides a unique perspective on the computations underlying reward-based learning.

While the study's findings are not entirely unexpected, the detailed analysis of the data using an established model of hierarchical Bayesian inference adds to our understanding of the neural mechanisms underlying impaired reward learning in stroke survivors. The study's conclusions highlight the importance of developing novel rehabilitation strategies that can compensate for impaired reward learning, which is a valuable contribution to the field.

Comparison with the State of Art

The study's findings are consistent with previous research on the effects of stroke on reward processing. However, the use of the HGF to analyze the data provides a more nuanced understanding of the computations underlying reward-based learning.

The study's conclusions are also consistent with the growing recognition of the importance of motivational pathways in rehabilitation approaches. The development of adaptive feedback strategies that compensate for impaired reward learning is a novel application of this research and has the potential to improve recovery outcomes in stroke survivors.

Read the original article on medRxiv


Please, help us continue to provide valuable information: