An inhibitor of RPK1 has been tested for safety in healthy people
Why take an interest in RPK1?
Serine / threonine protein kinase 1 (RIPK1) interacting with receptors is an intracellular protein involved in the regulation of inflammation and cell death. RIPK1 is activated in response to several inflammatory stimuli, including tumor necrosis factor alpha (TNF-α) signaling by the TNF 1 receptor. When activated, RIPK1 elicits multiple cellular responses, including cytokine release, microglial activation, and necroptosis, a regulated form of cell death.
The early role of RIPK1 in this signaling cascade led to the hypothesis that inhibition of RIPK1 signaling could be beneficial in diseases characterized by excess cell death and inflammation such as amyotrophic lateral sclerosis (ALS).
Indeed, inhibition of RIPK1 activity has been shown to protect against necroptotic cell death in vitro over a range of cell death models (see below).
In animal models of diseases ranging from ulcerative colitis to multiple sclerosis, inhibition of this pathway protects against pathology and cell death. These non-clinical findings, coupled with observations of increased activity of RIPK1 in human diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and multiple sclerosis, suggest that inhibition of RIPK1 could be beneficial in many different chronic diseases.
What problems are there with RPK1 inhibitors?
Inhibitors of RIPK1 are currently being evaluated as treatments for systemic inflammatory diseases, including inflammatory bowel disease and psoriasis, but there is no evidence that previously studied inhibitors in humans enter the system. central nervous system (CNS). To evaluate the potential for inhibition of RIPK1 as a therapeutic for chronic neurodegenerative diseases, it is necessary to study the pharmacokinetics (PK), pharmacodynamics (PD) and safety profile of a molecule capable of entering in the CNS at effective concentrations.
DNL104 is a selective inhibitor of CNS penetrable RIPK1 activity developed by Denali Therapeutics as a potential treatment for neurodegenerative disease. Denali, a CNS biotechnology company, is made up of veterans from Genentech, and joined the RIK1 program in 2016 with the acquisition of Incro Pharmaceuticals. Sanofi paid $ 125 million (€ 110 million) by the end of 2018 for participation in two developing RIPK1 inhibitors in Denali. The agreement covers small molecules designed to treat several neurodegenerative and systemic inflammatory diseases.
What is the current knowledge on the subject?
Inhibition of phosphorylation of RIP K 1 shows protection against pathology and inflammation in vitro and in animals, induced by various challenges, including in animal models with CNS disease (AD and ALS).
What question did this study address?
The safety, tolerability, pharmacokinetic, and pharmacodynamic effects of the CNS-penetrating RIP1 kinase inhibitor D NL104 were tested in randomized, placebo-controlled, increasing dose placebo-controlled trials.
What does this study add to our knowledge?
The results show that DNL104 inhibits phosphorylation of RIPK1 in healthy healthy volunteers with no effect on central nervous system safety, but liver toxicity issues have been raised in the multiple-dose-escalation study, in which 37.5 % of subjects (6 subjects) developed high liver function tests. related to the drug, of which 50% (3 subjects) were classified in the category inducing a drug-induced liver injury (DILI).
Why focus on necroptosis?
In 2014, we knew for a long time that the origin of ALS was not in motor neurons, but in other cells. But 8 years after the discovery of TDP-43 and 3 years after the discovery of C9orf72, most knowledge about the mechanisms of motor neuron degeneration in ALS still came from studies on SOD1-type mouse models. A clear conclusion from these studies is that non-neuronal cells play a critical role in the neurodegeneration related to SOD1 mutations. Indeed, the presence of healthy glial cells significantly delayed the onset of motor neuron degeneration, increasing the life without disease by 50%.
Since the work of the Jean-Pierre Julien Group in 2005, it has been suggested several times that interneurons, myelinating Schwann cells of the peripheral nervous system and endothelial cells of the vascular system could be at the origin of ALS. But other studies have suggested instead that astrocytes could cause spontaneous degeneration of motor neurons. For example, in 2003, researchers led by Don Cleveland of the University of California at San Diego involved astrocytes in motor neuron death, showing that administering SOD1 to these non-neuronal cells still resulted in motor neuron disease.
Agnostic research on the cause of ALS
Usually when a scientist decides to set up an experiment, he wants to test a hypothesis. The hypothesis itself is based on a model of the disease. A new trend in biology is to do research without having a preconceived idea (the model of the disease). It is believed that this is a difficult way to achieve results that could not have been achieved by conventional procedures.
In order to determine whether astrocytes from sALS patients can kill motoneurons independently without being exposed to SOD1, the Przedborski group decides to study the mix of different types of cells after they have been exposed to ALS, without prejudging of what causes ALS. For that they decide to design "their" in-vitro model of ALS. This well-cited article (100 times), however, contradicts many other studies.
Diane Re and Virginia Le Verche isolate astrocytes derived from post mortem motor cortex and spinal cord tissue from six SALS patients and 15 controls. They realize that after one month of culture, astrocytes have dominated other cultures. The researchers then mixed these astrocytes with motor neurons derived from human embryonic stem cells. While neurons thrived when co-occurring with non-sALS control astrocytes, their number began to fall after only four days of culturing with sALS astrocytes. All of this clearly shows that astrocytes from SALS patients specifically kill motor neurons, unlike control astrocytes.
However, other types of neurons than the motoneurons were resistant to the deleterious signals delivered by sALS astrocytes, and the fibroblasts of sALS patients also did not destroy the motoneurons, indicating that the toxic relationship was astrocyte-specific. and SALS motor neurons. To determine the role of SOD1 the researchers inhibited the expression of this protein in astrocytes using four small hairpin RNAs. The treatment failed to protect the motor neurons. The decrease in TDP-43 expression in astrocytes did not save them either.
Controversial research
These results contradict a study conducted by a team of Brian Kaspar, who found that astrocytes derived from neural progenitor cells taken from sALS patients needed SOD1 to destroy motor neurons, even though sALS patients showed no evidence of mutation of this gene (Haidet-Phillips et al., 2011). But in 2014, in the same issue as the publication of the Przedborski group, the Haidet-Phillips group publishes an article1 that is very similar to that of the Przedborski group, except that it incriminates NF-κB and therefore a mechanism for apoptosis rather than necroptosis, but in any case SOD1 is no longer supposed to be the primary cause of ALS.
For this team the inactivation of SOD1 in human astrocytes of patients with SALS does not preserve the motor neurons. How ALS astrocytes become toxic remains completely obscure. No known ALS-related mutations were identified in their samples and yet the toxic phenotype persisted even after several passages of adult astrocytes in culture. The authors suggest that necroptosis is the dominant mode of cell death in their in vitro model of sALS.
In 2019 it is difficult to say who is right between all these contradictory studies. Apoptosis and necroptosis are major mechanisms of cell death that usually result in opposite immune responses. Apoptotic death usually leads to immunologically silent responses, while death by necroptosis releases molecules that promote inflammation, a process called necrosis.