Archive for: July 2019 - Padirac Innovations' blog

La FDA a désigné APB-102, une thérapie génique pour la SLA SOD1, en tant que médicament orphelin

La SLA familiale, qui représente environ 10% de tous les cas de SLA, est héritée en tant que trait dominant. Environ 20% de ces cas résultent de mutations du gène codant pour la superoxyde dismutase 1 Cu / Zn cytosolique (SOD1). On estime que 12 à 23% des patients atteints de SLA familiale et 1 à 3% des patients atteints de SLA sporadique sont porteurs d'une mutation de ce gène; 185 mutations dans SOD1 ont été identifiées. Si la SLA est une maladie rare, chaque mutation de SOD1 est un cas extrêmement improbable, environ une sur 100 000 000!

Une maladie insaisissable

Plusieurs mécanismes ont été proposés pour expliquer pourquoi les protéines SOD1 mutantes sont neurotoxiques, notamment l'observation que la SOD1 mutante acquiert une toxicité par le biais d'une instabilité conformationnelle, d'un repliement erroné et d'un certain degré d'agrégation. À son tour, cela active de multiples événements indésirables, notamment la réponse protéique non repliée, le stress du réticulum endoplasmique (RE), les dommages mitochondriaux, l’excitabilité cellulaire accrue, le transport axonal altéré et certains éléments de mort cellulaire apoptotique et nécrotique. Certaines données suggèrent que la protéine SOD1 mutée mal repliée peut se propager d'une cellule à l'autre, à la manière d'un prion. De plus, il est proposé que le SOD1 mutant puisse causer un mauvais repliement toxique du SOD1 sauvage.

Vers un traitement de la SLA

Les mécanismes pour rendre inopérant SOD1 ont été poursuivi par de nombreux groupes, qui ont utilisé différentes modalités: oligonucléotides antisens (ASO), interférences d'ARN (ARNi), ARNi délivrés par un vecteur viral et CRISPR-Cas9. D'un point de vue clinique, l'un des principaux inconvénients des oligonucléotides antisens et des petits ARN interférents est l'administration répétée de la thérapie, alors que la thérapie génique médiée par le rAAV (incluant le transfert de gènes et le silençage génique basé sur l'ARNi) repose sur un paradigme posologique unique.

Effets secondaires

Les améliorations technologiques permettent aux doses d'oligonucléotides antisens d'être administrées moins fréquemment que par le passé, par exemple chez nusinersen (Spinraza), un oligonucléotides antisens récemment approuvé qui est développé par Biogen et Ionis Pharmaceuticals comme traitement de l'atrophie musculaire spinale. Avec ce médicament, un patient typique recevrait trois doses intrathécales chaque année une fois les doses de charge terminées. Au contraire, AVXS-101, un traitement de thérapie génique développé par AveXis (groupe Novartis) en tant que traitement de la SMA de type 1, a un effet thérapeutique jusqu'à 24 mois après une injection intraveineuse unique d'un vecteur rAAV9. Cependant, AVXS-101 a des effets secondaires tels que des élévations asymptomatiques des enzymes hépatiques. Ces types d’effets indésirables ont été observés lors d’autres essais de thérapie génique.

Qu'a fait Apic Bio?

Une thérapie potentielle pour SOD1 consiste à supprimer l'expression du gène mutant, quelle que soit sa mutation. Cependant, SOD1 a un rôle à jouer et la suppression de son expression, même celle du mutant, créera des effets secondaires. Apic Bio a étudié l'inactivation de SOD1 au moyen d'un virus adéno-associé (AAV) codant pour un microARN artificiel (miARN) qui ciblait SOD1.

Au cours des dernières années, Apic Bio et d’autres ont étudié cette stratégie en profondeur selon diverses modalités. Apic Bio a déjà démontré la caractérisation préclinique de cette approche chez le macaque cynomolgus (Macaca fascicularis) en utilisant un sérotype AAV pour la délivrance qui s'est avéré sûr lors des essais cliniques. Ils ont optimisé l'administration d'AAV dans la moelle épinière par préimplantation d'un cathéter et mise en place du sujet avec la tête baissée à 30 ° pendant la perfusion intrathécale. Les résultats ont démontré une délivrance efficace et une inhibition efficace du gène SOD1 dans les motoneurones. Ces résultats confirment l’idée que la thérapie génique avec un miARN artificiel ciblant SOD1 est sans danger et mérite d’être encore développée pour le traitement de la SLA liée à la SOD1 mutante.

Ils ont sélectionné un vecteur viral adéno-associé recombinant, le sérotype rh.10 (rAAVrh.10), en raison de son excellente transduction du système nerveux central (SNC) et de son profil de sécurité chez les primates non humains. La présence de GFP dans leurs vecteurs a provoqué une toxicité hépatique légère, telle que décrite précédemment, et une réponse immunitaire cellulaire chez deux des huit animaux. Le fait que la réponse immunitaire ne soit pas détectée chez tous les animaux injectés peut s'expliquer par le point de sacrifice précoce (22 jours).

Désignation de médicament orphelin

La Food and Drug Administration (FDA) des États-Unis a attribué à APB-102 la désignation de médicament orphelin. Le programme de médicaments orphelins de la FDA des États-Unis attribue la désignation orpheline à de nouveaux médicaments destinés au traitement de maladies rares (affectant moins de 200 000 personnes aux États-Unis). La désignation offre aux promoteurs des incitations commerciales et de développement, notamment sept années d’exclusivité commerciale aux États-Unis, des consultations de la FDA sur la conception d’études cliniques, le potentiel de développement accéléré de médicaments et certaines exemptions et réductions de frais.

Quelle est la suite?

Avoir une désignation de médicament orphelin dans la SLA ne signifie pas une autorisation de mise sur le marché, plusieurs dizaines de médicaments l’ont obtenu pour la SLA de part le passé. Jusqu'à présent cela a toujours été retiré quelques années plus tard par la FDA, alors qu'il était évident que ces médicaments n'étaient pas du tout efficaces. L'important est maintenant d'attendre les essais cliniques. Pour faire ceux-ci, Apic Bio a besoin de beaucoup de fonds, ils solliciteront probablement des investisseurs. Et dans cette perspective, une désignation de médicament orphelin les aidera beaucoup.

Publicité

Ce livre retrace les principales étapes de la recherche sur la SLA au cours des 30 dernières années, présente les médicaments en cours d'essai clinique, ainsi que les futurs traitements susceptibles de bloquer la maladie dans un premier temps et de contribuer à sa guérison dans un deuxième temps.




Orphan drug designation to APB-102

- Posted in English by

FDA has granted orphan drug designation to APB-102, a gene therapy for SOD1 ALS

Familial ALS, which represents about 10% of all ALS cases, is inherited as a dominant trait. About 20% of these cases arise from mutations in the gene encoding cytosolic Cu/Zn superoxide dismutase 1 (SOD1 ). An estimated 12 to 23% of patients with familial ALS and 1 to 3% of patients with sporadic ALS carry a mutation in this gene; 185 mutations in SOD1 have been identified. So if ALS is a rare disease, each mutation of SOD1 is an extremely improbable case, roughly one out of 100,000,000!

An elusive disease

Multiple mechanisms have been proposed to explain why mutant SOD1 proteins are neurotoxic, including the observation that mutant SOD1 acquires toxicity via conformational instability, misfolding, and some degree of aggregation. In turn, this activates multiple adverse events that include the unfolded protein response, endoplasmic reticulum (ER) stress, mitochondrial damage, heightened cellular excitability, impaired axonal transport, and some elements of apoptotic and necrotic cell death. Some data suggest that misfolded mutant SOD1 protein can spread from cell to cell in a prion-like fashion. Additionally, it is proposed that mutant SOD1 can cause toxic misfolding of wild-type SOD1.

Toward a therapy for ALS

The therapeutic silencing of SOD1 has been pursued by many groups, using various modalities: antisense oligonucleotides (ASOs), RNA interference (RNAi), viral vector-delivered RNAi, and CRISPR-Cas9. From a clinical perspective, one of the major disadvantages of ASOs and small interfering RNAs is the repeated dosing of the patients, whereas rAAV-mediated gene therapy (including gene transfer and RNAi-based gene silencing) relies on a one-time dosing paradigm.

side effects

Technological improvements allow the ASO doses to be less frequent than in the past, for example, by nusinersen (Spinraza), a recently approved ASO developed as a treatment for spinal muscular atrophy (SMA) by Biogen and Ionis Pharmaceuticals. With this drug, a typical patient would receive three intrathecal doses yearly upon completion of the loading doses In contrast, as an example, AVXS-101, a gene therapy treatment developed by AveXis as a treatment for SMA type 1, has a therapeutic effect for up to 24 months after a single intravenous injection of a rAAV9 vector. However AVXS-101 has side effects like asymptomatic liver enzyme elevations. These types of adverse events have been observed with other gene therapy trials.

What did Apic Bio?

A potential therapy for SOD1 is to suppress the expression of the mutant gene, whatever its mutation. Indeed SOD1 has a role and suppressing its expression, even the mutant one, will create side effects. Apic Bio investigated silencing of SOD1, using an adeno-associated virus (AAV) encoding an artificial microRNA (miRNA) that targeted SOD1 .

In recent years, Apic Bio and others have investigated this strategy in depth using various modalities. Apic Bio have previously demonstrated the preclinical characterization of this approach in cynomolgus macaques (Macaca fascicularis ) using an AAV serotype for delivery that has been shown to be safe in clinical trials. They optimized AAV delivery to the spinal cord by preimplantation of a catheter and placement of the subject with head down at 30° during intrathecal infusion. Results demonstrated efficient delivery and effective silencing of the SOD1 gene in motor neurons. These results support the notion that gene therapy with an artificial miRNA targeting SOD1 is safe and merits further development for the treatment of mutant SOD1 -linked ALS. They selected a recombinant adeno-associated viral vector serotype rh.10 (rAAVrh.10) because of its excellent central nervous system (CNS) transduction and safety profile in nonhuman primates. The presence of GFP in their vectors caused mild liver toxicity, as previously described, and a cellular immune response in two of eight animals. The fact that the immune response is not detected in all the injected animals can be explained by the early sacrifice point (22 days).

Orphan drug designation

The U.S. Food and Drug Administration (FDA) has granted orphan drug designation to APB-102, a gene therapy soon to be in clinical development for the treatment of genetic SOD1 amyotrophic lateral sclerosis (ALS). The U.S. FDA Orphan Drug program provides orphan designation to novel drugs that are intended for the treatment of rare diseases (those affecting fewer than 200,000 people in the United States). The designation provides sponsors with development and commercial incentives including seven years of market exclusivity in the US, consultation by FDA on clinical study design, potential for expedited drug development, and certain fee exemptions and reductions.

What is next?

Having an orphan drug designation in ALS is not a so big deal, several dozens drugs got it for ALS and it was withdrawn a few years later by FDA, when it was obvious they were not efficient at all. The important thing is now to wait for clinical trials. For that Apic Bio needs money, so probably they will solicit investors. And in this perspective, having an orphan drug designation will help them a lot.

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

Quoi de neuf dans la recherche en thérapie cellulaire immunitaire?

Nous voyons enfin des recherches fondamentales en matière de cancer, commencer à porter leurs fruits. Depuis 2011, l’immunothérapie est apparue comme une nouvelle approche passionnante du traitement du cancer qui donne des réponses durables et bien qu’initialement limitée à certains cancers, la recherche voudrait étendre ce concept aux tumeurs solides. La recherche dans ce domaine se développe depuis 25 ans, mais ce n’est qu’au cours des 10 dernières années que nous avons vu certaines de ces thérapies fournir des réponses réelles et durables pour les patients. Quelques patients ont eu des réponses remarquables à ces traitements, mais d’autres ont développé des résistances à ces approches.

Inhibiteurs de point de contrôle

Une grande partie de l’intérêt a porté sur les inhibiteurs de point de contrôle (PD-L1), immunothérapeutiques qui libèrent les «freins» à la surface des cellules immunitaires appelées lymphocytes T, dont certains sont naturellement capables de détruire les cellules cancéreuses.

Thérapie cellulaire adoptive CAR T

Plus récemment, une deuxième approche est apparue qui exploite la puissance du système immunitaire, connue sous le nom de thérapie cellulaire immunitaire ou thérapie cellulaire adoptive. Au lieu de libérer les freins à l'activité immunitaire sur les lymphocytes T, la thérapie cellulaire adoptive augmente la puissance du système immunitaire du patient en augmentant le nombre de cellules T tueuses de cancer.

La thérapie cellulaire adoptive est une procédure médicale complexe qui est personnalisée pour chaque patient. Elle commence par l’extraction des lymphocytes T. En laboratoire, ces lymphocytes T sont génétiquement modifiés pour cibler les antigènes spécifiques aux tumeurs, puis élargis ou sont élargis en fonction de leur réactivité tumorale naturelle. Une fois que suffisamment de lymphocytes T ont été générés, elles sont infusées de nouveau dans le patient pour aider à la régression de tumeur de médiation.

Différentes thérapie CAR T

Il existe plusieurs types de thérapie cellulaire adoptive. Une approche utilise des lymphocytes infiltrant de tumeur (TILs) qui sont isolés à partir de la tumeur d’un patient, cultivées pour accroître leur nombre en laboratoire, et infusés de nouveau dans le patient. Une deuxième approche consiste à former les lymphocytes T récoltés auprès d’un patient à exprimer un récepteur t-cellulaire spécifique à l’antigène tumoral (TCR) afin que les lymphocytes T puissent reconnaître et attaquer les cellules tumorales qui expriment de tels antigènes. Cela se fait en modifiant génétiquement les lymphocytes T issues d’un patient pour exprimer un nouveau récepteur chimérique qui reconnaît un antigène spécifique sur la surface cellulaire.

Quels thérapies CAR T sont autorisées?

À l’heure actuelle, les seules thérapies cellulaires adoptives approuvées par la Food and Drug Administration (FDA) des États-Unis sont les thérapies à cellules T (Récepteur schimérique) des récepteurs de l’antigène chimérique (CAR), le Tisagenlecleucel (Kymriah) et l’Axicabtagene ciloleucel (Yescarta).

Le Tisagenlecleucel et le Yescarta ciblent les cellules cibles qui expriment CD19, cet antigène leucocytaire humain qui s’exprime à la surface des lymphocytes B. En fait peu de patients répondent favorablement à ces thérapies. L’un des principaux défis du domaine est d’identifier des moyens d’augmenter le nombre de patients pour lesquels le traitement par la thérapie à cellules CAR T donne une réponse significative.

Comment augmenter substantiellement le nombre de patients répondant aux thérapies CAR T?

Une stratégie potentielle est d’identifier les antigènes qui sont présents sur les cellules cancéreuses qui ne sont présent dans les tissus sains, si nous pouvons trouver les antigènes appropriés, nous pourrions être en mesure de concevoir de nouvelles cellules CAR T pour attaquer spécifiquement les tumeurs solides qui expriment de tels antigènes. Une autre stratégie consiste à explorer pleinement d’autres médicaments en combinaison avec les thérapies à cellules CAR T. Par exemple, il existe des médicaments qui bloquent les composants du microenvironnement tumoral suppressif, tels que la transformation du facteur de croissance bêta (TGFβ) ou le facteur de croissance endothéliale vasculaire (VEGF), qui peuvent être utilisé en synergie avec les thérapies à cellule CAR T. Alternativement, nous pourrions combiner les lymphocytes CAR T avec des médicaments qui stimulent les lymphocytes T, tels que l’anti-4-1BB ou anti-OX40. Une autre combinaison serait la thérapie à cellule CAR T avec des inhibiteurs de point de contrôle.

Comment réduire les coûts de ces thérapies CAR T?

Un autre défi dans ce domaine est l’évolutivité de bon nombre de ces stratégies thérapeutiques. Quelle est la meilleure façon d’intensifier ces processus et de réduire les coûts associés aux thérapies cellulaires adoptives? C’est une question sans réponse à l’heure actuelle, mais nous allons sans doute assister à des progrès spectaculaires dans la technologie qui permet la mise à l’échelle, tels que de nouvelles plates-formes automatisées et de nouvelles façons de fabriquer cliniquement des thérapies à cellule T. Ces percées permettront de produire des produits autologues de façon plus fiable, plus efficace et peut-être à un coût réduit par rapport à ce que nous voyons actuellement.

Quelles sont les alternatives aux thérapies CAR T?

Jusqu’à présent, une grande partie de l’intérêt entourant les thérapies à cellules immunitaires a porté sur les thérapies à cellules CAR T. Quelles sont les thérapies alternatives les plus intéressantes? La thérapie de TIL obtient finalement l’attention qu’elle mérite - elle a clairement une activité reproductible, particulièrement dans le mélanome, et elle est examinée dans d’autres types pleins de tumeur aussi bien.

Il y a aussi un intérêt certain autour des cellules T naturelles qui ne sont pas modifiées, qu’elles soient tumeur-infiltrant ou simplement des cellules antigène-spécifiques sélectionnées parmi des patients. Un autre domaine en cours de développement sont les thérapies cellulaires adoptives qui utilisent des cellules tueuses naturelles (NK). Ces cellules immunitaires innées sont des machines à tuer uniques qui ne nécessitent pas d’amorçage par des cellules présentant des antigènes, ce qui leur permet de tuer rapidement les cellules cancéreuses.

Plusieurs stratégies cellulaires adoptives intègrent une approche personnalisée pour reconnaître les néoantigènes spécifiques au patient. Cette approche a été mise au point par Steven Rosenberg et d’autres personnes ont exprimé l’idée que cette méthode est irréalisable et impossible. Cependant, le secteur commercial a commencé à investir dans ce domaine, tant pour les vaccins que pour les cellules T modifiées. Une fois que les coûts auront baissé, et l’efficacité de la fabrication se sera améliorée, l’ingénierie d’un produit personnalisé peut devenir une option réaliste.

Les aspects évolutifs et techniques de cette approche demeurent difficiles à l’heure actuelle, mais cette méthode a fait ses preuves chez certains patients. Une approche intermédiaire consisterait à personnaliser partiellement une thérapie, nous pourrions générer une bibliothèque de cellules T qui ciblerait les antigènes courants, et une fois que les antigènes spécifiques qui sont exprimés chez le patient sont identifiés, nous pourrait administrer le traitement à cellule T correspondant. Cette approche serait un peu moins chronophage que les thérapies habituelles.

Quels sont les domaines de la thérapie cellulaire adoptive qui innovent actuellement?

Nous allons voir des progrès dans la fabrication et l’ingénierie qui permettra d’améliorer l’efficacité de ces thérapies. Je vois aussi le domaine de la bioingénierie s’associer à la biologie synthétique, à l’immunologie fondamentale des lymphocytes T et à la biologie moléculaire, il y a une sorte de convergence des champs d’études qui nous permettra de fabriquer des lymphocytes T plus sophistiqués. Il va y avoir beaucoup d’innovation dans cet espace dans les années à venir, par exemple sur les moyens de changer le phénotype des cellules T afin d’améliorer leur résistance aux effets négatifs du microenvironnement immunitaire. Un autre exemple peut être trouvé chez Carl June et ses collègues qui étudient l’utilisation de CRISPR pour enlever génétiquement le blocage immunitaire PD-1 des cellules CAR T afin d’augmenter leur potentiel agressif.

Qu'est-ce qu'un essai clinique virtuel?

Limitation des essais cliniques traditionnels

Au fur et à mesure que de nouveaux médicaments émergent, il est clair que nous devons nous assurer que les bons traitements arrivent aux bons patients. Or les essais cliniques, aussi codifiés qu'ils soient, ne permettent pas d'atteindre ce but. Une première critique des essais cliniques concerne le fait qu'il est difficile d'obtenir un échantillon représentatif du marché qe devrait adresser le médicament potentiel, car celà nécessiterait des centaines de sites de par le monde, participants à l'essai clinique. Or les différents groupes ethniques n'ont pas les mêmes constantes biologiques a commencer par le débit de filtration glomérulaire qui est très important pour savoir combien de temps un médicament reste dans l'organisme. Par ailleurs les essais cliniques évitent d'enroller des femmes, car une femme enceinte a une biologie très différente d'une autre femme. Les femmes sont donc mises en danger par l'absence d'essais les concernants. Les responsables d'essais cliniques sélectionnent de façon très rigoureuse les participants pour augmenter leur taux de réussite, ce qui est contraire à l'esprit des essais cliniques car ceux-ci sont sensé porter sur un échantillon représentatif de la population concernée par ce médicament. Les autorités seront aussi beaucoup plus laxistes si il n'y a pas de médicament efficace déjà présent sur le marché. Enfin il est admis que si un essai échoue, mais qu'un certain nombre de patients, ayant des caractéristiques en commun, ont une bonne réaction aux médicament, alors l'autorisation de mise sur le marché est accordée pour les malades ayant des caractéristiques similaire à ce sous-groupe.

Où trouver des données représentatives et non biaisées?

Nous devons utiliser des données non biaisées pour évaluer les effets de la prise d'un traitement chez les patients. Un type d'information qui peut nous aider à mesurer notre progression vers ce but, consiste à utiliser les données massives que nous produisont constamment, c'est à dire des informations recueillies en dehors d'un essai clinique. Ce sont des données d'observation obtenues en dehors du contexte d'essais contrôlés randomisés et générées au cours de la pratique clinique courante. Il peut s'agit de dossiers médicaux électroniques, de dossiers d'assurance dans le domaine médical mais aussi de données sociales. Il est nécessaire d'anonymiser les marqueurs d'identité des patients pour préserver leur vie privée. Aux États-Unis, la loi "21st Century Cures Act" demande à la FDA d'accroître l'utilisation de la méthode des informations réelles.

Un cas d'application

L'utilisation de données réelles permet aussi de comparer rapidement l'efficacité de deux médicaments concurrents. Par exemple l'étude CAROLINA, qui était dirigée par Boehringer Ingelheim et Eli Lilly pour comparer leur médicament contre le diabète, Tradjenta, à un traitement plus ancien, le glimepiride a duré 8 ans et eut un coût considérable. La société privée de soins de santé de New York Aetion a publié les résultats d'une étude dans laquelle des informations réelles ont été utilisées pour tenter de reproduire les résultats de l'essai clinique randomisé et contrôlé spécifique CAROLINA. L'étude d'Aetion était beaucoup plus rapide que l'étude CAROLINA. Il a fallu seulement six semaines pour la terminer, au cours de ces six semaines quatre ans de données d'assurance médicale concernant ces deux médicaments ont été analysées.

Qu'apportent de plus les essais cliniques virtuels?

Pourquoi est-il essentiel d'aller au-delà de l'information sur les essais cliniques? Si un patient qui reçoit un médicament est âgé ou souffre de plusieurs maladies chroniques, il est très possible qu'un patient comme celui-ci n'ait pas été représenté dans l'essai clinique.

Les médias sociaux sont également une plate-forme pour les patients de partager des informations sur leurs expériences avec des traitements particuliers, par exemple le site de partage d'informations entre patients Patientslikeme.

Bien qu'on s'inquiète de l'utilisation de cette information, étant donné qu'elle n'est pas échangée en milieu clinique, nous pouvons tirer des leçons de ces données agrégées sur la façon dont les patients réagissent (ou non), quelles informations ont pu être exclus des essais cliniques mais qui ont un fort intérêt, par exemple: Est-ce que les patients ont des commorbidités, est-ce qu'ils prennent des vitamines ou du cannabis sans en avoir discuté avec leur médecin? Un autre problème concerne les effets secondaires qui sont largements minimisés par le corps médical notamment quand ils sont subis seulement par un sous ensemble de la population concernée. Par exemple, les traitements du cancer du sein peuvent fonctionner différemment dans différentes populations et dans différentes circonstances.

Quels avantages pour les parties prenantes?

À l'heure actuelle, de nombreux mutuelles et autres organismes payeurs hésitent à accroître l'accès à des médicaments qui ont des coûts initiaux élevés, mais qui permettent des économies à long terme. Ce type de planification budgétaire ne permet pas aux organismes payeurs de tenir compte des résultats à long terme pour les patients et des avantages financiers que ces nouveaux produits novateurs apportent aux patients dans le besoin.

Il n'y a pas que les organismes payeurs et les fabricants de médicaments qui ont reconnu cette possibilité d'utiliser la méthode des informations réelles. Les cliniciens et leurs principales organisations, comme l'American Society of Clinical Oncology, travaillent également sur des protocoles pour évaluer les informations réelles des traitements existants et nouveaux. Ils reconnaissent également l'importance de recueillir ces données auprès des patients pour ainsi comprendre comment ce type de données peut entrainer des progrès vers de meilleurs soins.

Des réticences nombreuses

Cependant de nombreux spécialistes des essais cliniques ne sont pas convaincus. Pour eux, la méthode des informations réelles ne peut tout simplement pas supplanter les essais cliniques traditionnels. Ils pensent que la méthode des informations réelles ne peut que corriger les biais que les chercheurs comprennent déjà. En assignant aléatoirement les patients à un traitement ou à un autre, les essais cliniques reposent sur la possibilité d'annuler tout biais, que les chercheurs en soient conscients ou non.

Publicité


Ce livre retrace les principales réalisations de la recherche sur la SLA au cours des 30 dernières années. Il présente les médicaments en cours d’essai clinique ainsi que les recherches en cours sur les futurs traitements susceptibles d’ici quelques années, d’arrêter la maladie et de fournir un traitement complet en une décennie ou deux.

Please, to help us continue to provide valuable information: