ALS and cancer

There is a persistent mystery about the causative mechanisms of ALS. The intense work over the last two decades on SOD1 has not helped to conclusively understand its link with the disease. Many SOD1 mutations produce very similar ALS phenotypes. But these mutations have not prevented neurons from functioning properly for several decades, so it is difficult to invoke them to explain the onset of the disease. Even though there is less scientific work on FUS or TDP-43, as their discovery is more recent, the mystery is also complete on how a non-mutated and mis-located TDP-43 protein in the cytoplasm could kill a neuron. The only obvious case is that of C9orf72, where the dipeptide repeats, clearly could not produce functional protein. However, even in this case, it is unclear why ALS only occurs at an advanced age.

PARP is involved in DNA repair

There is a troubling link between cancer and ALS, for example, there is an inverse relationship between the onset of cancer and the onset of ALS. ALS medications also have anti-cancer properties. So, perhaps it's not surprising that they can share a fundamental cause: defects in DNA repair mechanisms. Poly-ADP-ribose polymerases (PARPs) are involved in DNA repair, as are FUS or TDP-43.

During DNA damage or cellular stress, ** PARP ** is activated, resulting in an increase in the amount of poly-ADP-ribose and a decrease in the amount of NAD +.

enter image description here

The poor localization of FUS and TDP-43 in the cytoplasm inhibits the mechanism of DNA repair

FUS and TDP-43 both play a role in the treatment of RNA, including splicing, transcription and transport. The involvement of FUS and TDP-43 in the response to cell genome damage has recently been discovered. In healthy neurons, FUS protects the genome by facilitating dependent recruitment of ** PARP-1 **. The authors report that TDP-43 is an essential component of the end-junction-mediated double-stranded DNA (DNA) repair pathway (NHEJ). TDP-43 is rapidly recruited to double-stranded DNA sites to stably interact with DDR and NHEJ factors, acting in particular as a scaffold for recruitment of the isolating XRCC4-DNA ligase 4 complex at DSB sites. Indeed, the presence of fragmentation of TDP-43 and its aggregation in ALS samples is strongly correlated with the presence of ** PARP-1 ** and cleaved caspase-3.

During apoptosis, PARP moves to the cytoplasm

Caspases are a family of cysteine ​​proteases that play an essential role in programmed cell death. This protease cleaves ** PARP-1 ** into two fragments, leaving it completely inactive to limit the production of poly-ADP-ribose. One of its fragments migrates from the nucleus to the cytoplasm and is considered a target of autoimmunity. At the beginning of 2019, dysregulation of PARylation was found to contribute to the pathogenesis of ALS by promoting protein aggregation.

Although PARylation occurs primarily on PARP proteins, the association of PAR with ALS-related granules has been observed.

Causal chain of ALS

The results of the scientists thus link the pathology of TDP-43 to altered repair of DSB and persistent DDR signaling in motor neuron diseases, and suggest that targeted therapies on double-stranded DNA repair could improve genome instability induced by the toxicity of TDP-43 in motor neuron diseases.

In summary the mechanism causing TDP-43 ALS would be:

  • Mutations of FUS or TDP-43 would render DNA repair ineffective.
  • The intervention of PARP would repair this DNA and relocate TDP-43 in granules in the cytoplasm.
  • This would further aggravate the problems of DNA repair.

A possible therapeutic mechanism

These new findings provide insight into how a DNA repair defect may be associated with FUS and / or TDP-43 neurodegeneration, and raises the question of whether the resolution of DNA ligation problems would be a pathway. promising for the development of neuroprotective treatments.

So mechanisms that would alleviate the burden of PARP (which is different from inhibiting it), would improve the pathology.

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

SLA et cancer

Il existe un mystère persistant sur les mécanismes causatifs de la SLA. Les travaux intenses depuis deux décennies, sur la SOD1 n’ont pas aidé à comprendre de manière concluante son lien avec la maladie. De nombreuses mutations de SOD1 produisent des phénotypes de SLA très similaires. Mais ces mutations n'ont pas empêché les neurones de fonctionner correctement pendant plusieurs décennies, de sorte qu'il est difficile de les invoquer pour expliquer l'apparition de la maladie. Même s'il y a moins de travaux scientifique concernant FUS ou TDP-43, car leur découverte est plus récente, le mystère est également complet sur la manière dont une protéine TDP-43 non mutée et mal localisée dans le cytoplasme, pourrait tuer un neurone. Le seul cas évident est celui de C9orf72, où les répétions de dipeptide, ne pourrait manifestement pas produire de protéine fonctionnelle. Cependant même dans ce cas, on ignore pourquoi la SLA se déclare seulement à un âge avancé.

PARP est impliqué dans la réparation de l'ADN

Il y a un lien troublant entre le cancer et la SLA, par exemple il y a une relation inverse entre l'apparition du cancer et l'apparition de la SLA. Les médicaments contre la SLA ont également des propriétés anticancéreuses. Donc, il n’est peut-être pas surprenant qu’ils puissent partager une cause fondamentale: des défauts dans les mécanismes de réparation de l’ADN. Les poly-ADP-ribose polymérases (PARP) interviennent dans la réparation de l'ADN, tout comme FUS ou TDP-43.

Lors de dommages à l'ADN ou de stress cellulaire, les PARP sont activés, entraînant une augmentation de la quantité de poly-ADP-ribose et une diminution de la quantité de NAD+.

enter image description here

La mauvaise localisation de FUS et TDP-43 dans le cytoplasme inhibe le mécanisme de réparation de l’ADN

FUS et TDP-43 jouent tous deux un rôle dans le traitement de l'ARN, y compris l'épissage, la transcription et le transport. L'implication de FUS et de TDP-43 dans la réponse aux dommages du génome cellulaire a été découverte récemment. Dans les neurones sains, le FUS protège le génome en facilitant le recrutement dépendant de PARP-1. Les auteurs rapportent que TDP-43 est un composant essentiel de la voie de réparation de rupture d'ADN à double brin (ADN) médiée par une jonction d'extrémité (NHEJ). TDP-43 est rapidement recruté sur les sites d'ADN à double brin pour interagir de manière stable avec les facteurs DDR et NHEJ, agissant en particulier comme un échafaudage pour le recrutement du complexe XRCC4-ADN ligase 4 isolant aux sites DSB. En effet, la présence de fragmentation de TDP-43 et son agrégation dans des échantillons de SLA est fortement corrélées à la présence de PARP-1 et de caspase-3 clivées.

Au cours de l'apoptose, la PARP se déplace vers le cytoplasme

Les caspases sont une famille de protéases de la cystéine qui jouent un rôle essentiel dans la mort cellulaire programmée. Cette protéase clive PARP-1 en deux fragments, la laissant complètement inactive, afin de limiter la production de poly-ADP-ribose. L'un de ses fragments migre du noyau vers le cytoplasme et est considéré comme une cible de l'auto-immunité. Au début de l'année 2019, il a été constaté qu'une dysrégulation de la PARylation pourrait contribuer à la pathogenèse de la SLA en favorisant l'agrégation des protéines.

Bien que la PARylation se produise principalement sur les protéines PARP, l'association de la PAR aux granules liées à la SLA a été observée.

Chaine causale de la SLA

Les résultats des scientifiques relient donc la pathologie de TDP-43 à une réparation altérée du DSB et à une signalisation persistante du DDR dans les maladies du motoneurone, et suggèrent que les thérapies ciblées sur la réparation du double brin d'ADN, pourraient améliorer l'instabilité du génome induite par la toxicité du TDP-43 dans les maladies du motoneurone.

En résumé:

  • Des mutations de FUS ou de TDP-43 rendraient inefficace la réparation de l'ADN.
  • L'intervention de PARP réparerait cet ADN et transfèrerait TDP-43 dans des granules localisés dans le cytoplasme.
  • Cela aggraverait encore les problèmes de réparation de l'ADN.

Un possible méchanisme thérapeutique

Ces nouvelles découvertes permettent de mieux comprendre comment un défaut de réparation de l’ADN peut être associé à la neurodégénérescence FUS et/ou TDP-43, et soulève la question de savoir si la résolution des problèmes de ligature de l’ADN serait une voie prometteuse pour la mise au point de traitements neuroprotecteurs.

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

Qu'est-ce que la chimioprévention

La chimioprévention (également la chimioprophylaxie) fait référence à l'administration d'un médicament dans le but de prévenir une maladie ou une infection. Des antibiotiques, par exemple, peuvent être administrés à des patients présentant des troubles du système immunitaire afin de prévenir les infections bactériennes (en particulier les infections opportunistes). Il peut également s'agir d'administrer de l'héparine pour prévenir la thrombose veineuse profonde chez les patients hospitalisés.

Comment l'incidence du cancer du poumon?

Le cancer du poumon est la principale cause de décès par cancer aux États-Unis et en Europe. Parmi les autres agents cancérigènes, citons l'amiante et les matières radioactives. Par conséquent, la prévention du tabagisme est primordiale pour la prévention du cancer du poumon. Les stratégies efficaces pour réduire l'incidence du cancer du poumon (au-delà du sevrage tabagique) font actuellement défaut.

Par exemple, le développement du cancer du poumon à cellules squameuses commence par un épithélium normal et progresse par l'hyperplasie, la métaplasie, la dysplasie (légère, modérée et grave) et le carcinome in situ. À ce jour, aucun biomarqueur intermédiaire n'a été validé pour l'interception du cancer du poumon, en partie en raison de l'absence de traitement éprouvé, et l'histologie est actuellement considérée comme le meilleur marqueur.

Quelles pistes pour la chimioprévention du cancer du poumon?

Les produits de la voie de l'acide arachidonique, en particulier les prostaglandines (PG), jouent un rôle essentiel dans la carcinogenèse pulmonaire et la chimioprévention. De grandes études épidémiologiques ont montré un lien entre l'utilisation régulière d'aspirine et la diminution du taux de certains cancers. Ces résultats ont conduit à un essai clinique montrant que l'iloprost oral (un analogue de la prostacycline) améliorait de manière significative la dysplasie endobronchique chez les anciens fumeurs. Des études supplémentaires portant sur le mécanisme chimio-préventif ont montré que les effets de la prostacycline étaient indépendants du récepteur de la PGI2 à la surface d'une cellule et pouvaient s'appuyer sur la capacité de la PGI2 à agir en tant qu'agoniste de la PPARγ.

En quoi les thiazolidinediones sont-elles intéressantes?

Les thiazolidinediones (TZD) sont des agonistes de PPARγ couramment utilisés dans le traitement du diabète et la pioglitazone TZD a été étudiée dans de nombreux modèles de cancer précliniques. Des études précliniques sur des surexpresseurs de PPARγ génétiquement modifiés et des agonistes de PPARγ par voie orale ont confirmé que l'activation de PPARγ favorise la différenciatio, inhibe la croissance tumorale et empêche la progression des lésions préinvasives dans les modèles murins. Dans des modèles précliniques, la pioglitazone par voie orale, et plus récemment inhalée, prévient à la fois les carcinomes à cellules adéno et épidermoïdes, en monothérapie ou en association avec des corticostéroïdes et de la metformine inhalés. Les raisons d'un rôle dans la chimioprévention du cancer du poumon ont également été étayées par une vaste étude portant sur les taux de cancer du poumon, de la prostate et du côlon chez des vétérans diabétiques traités avec TZD. Govindarajan et ses collègues ont rapporté une diminution de 33% de l'incidence du cancer du poumon par rapport aux utilisateurs non-TZD, suggérant que l'activation de PPARγ pourrait prévenir le cancer du poumon.

Pourquoi un essai clinique?

Ceci a conduit à un essai à double insu, randomisé, de phase II et contrôlé par placebo de la pioglitazone orale chez des fumeurs à haut risque ou d'anciens fumeurs atteints d'atypie cytologique des expectorations ou de dysplasie endobronchique connue. Cet essai a été répertorié et enregistré sur ClinicalTrials.gov (identifiant: NCT00780234).

Cet essai de chimioprévention de phase II, monocentrique, à double insu, à évalué la pioglitazone par voie orale chez des fumeurs actuels ou anciens à haut risque présentant une atypie cytologique des expectorations ou une dysplasie endobronchique connue.

Quel en est le résultat?

Après six mois de traitement, la pioglitazone n’a pas significativement amélioré l’histologie endobronchique par rapport au placebo; Cependant, le traitement par la pioglitazone a entraîné une amélioration histologique de certaines de ces lésions. Les auteurs concluent que de futures études visant à mieux caractériser la dysplasie réactive dans ce contexte sont justifiées.

What is interleukin 6?

Interleukin 6 (IL6) is a potent pleiotropic cytokine that regulates cell growth and differentiation and plays an important role in the immune response. Deregulated IL6 production is implicated in the pathogenesis of many diseases, such as multiple myeloma, autoimmune diseases and prostate cancer. In addition to other functions, interleukin 6 (IL-6) is involved in the development of immunological and inflammatory reactions. Autoimmune diseases such as rheumatoid arthritis are associated with abnormally high levels of IL-6.

enter image description here

How does it work?

IL-6 had previously been classified as a proinflammatory cytokine, but the anti-inflammatory (beneficial) effects of myokines in general of interleukin-6 of muscle origin are now recognized. So we have a cytokine that can have two modes, one beneficial, the other deleterious, how is that possible?

The explanation could be that the signaling pathways upstream and downstream of IL-6 differ markedly between myocytes and macrophages. It appears that unlike IL-6 signaling in macrophages, which depends on activation of the NFκB signaling pathway, intramuscular IL-6 expression is regulated by a signaling cascade network, including Ca2 + / NFAT and glycogen / p38 MAPK pathways.

IL6 has 2 signaling paradigms: IL6 signaling and IL6 signaling. Although conventional IL6 signaling occurs via IL6 receptors bound to the membrane, IL6 retransformation is induced by a systemic and localized increase in the extracellular soluble IL6 receptor (sIL6R). generated by proteolytic cleavage, called "shedding," of the receptor from the cell surface. These soluble receptors can be activated by IL6 and activate signaling cascades. Thus, IL6 trans-signaling activates the IL6 signaling pathways in cells that do not express the IL6 receptor.

Are there different reactions to IL6 in humans?

In humans, there are at least two alleles for the IL6 receptor (Asp358Ala, A / C, rs2228145), the A allele (Asp358) being the main allele and the C allele (Ala358), the variant allele. The expression of the IL6 receptor (IL6R) is favored by the C allele. In individuals with IL6R allele, increased receptor expression improves both localized and systemic IL6 transsignalization in the presence of IL6. This allele is associated with certain diseases such as asthma.

Why would IL6 have an interest in treating ALS?

Perhaps because a patient with ALS was reported to have had a remission in 2014 by consuming lunasin, a soy peptide, researchers have wondered whether IL6 transsignalization could play a role. potential in ALS.

How did the scientists proceed?

IL6 and sIL6R levels were measured in samples in a cohort of patients with ALS and compared to healthy patients. Their results suggest that the IL6R C allele influences IL6 signaling in the central nervous system of patients with ALS. In a second cohort of ALS subjects with more definite clinical data, the presence of the IL6R C allele was associated with a more rapid progression of the disease. These results suggest that identifying patients with the IL6R C allele may provide useful information for predicting disease progression and identifying those who may benefit most from IL6R blocking therapies.

What happened in 2014

ALS experts will recall that in 2014 Mike McDuff, who has ALS, experienced dramatic improvements in speech, swallowing and strength.

Dr. Bedlack from SLA Duke Clinic confirmed that Mike McDuff's symptoms had actually improved dramatically. A clinical trial was then conducted to evaluate the interest of lunasin in the case of ALS. Fifty people with ALS were put on the diet containing exactly the lunasin Mike McDuff had followed and were followed for one year. The clinical trial was completed in September 2017. Unfortunately, there is no evidence that lunasin slowed, stopped, or reversed ALS in clinical trial participants. Gastrointestinal adverse events were more frequent than expected in the trial participants, including cases of constipation severe enough to warrant hospitalization.

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

Qu'est-ce que l'interleukine 6?

L'interleukine 6 (IL6) est une cytokine pléiotrope puissante qui régule la croissance et la différenciation cellulaires et joue un rôle important dans la réponse immunitaire. La production dérégulée d'IL6 est impliquée dans la pathogenèse de nombreuses maladies, telles que le myélome multiple, les maladies auto-immunes et le cancer de la prostate. Outre d'autres fonctions, l'interleukine 6 (IL-6) est impliquée dans le développement de réactions immunologiques et inflammatoires. Les maladies auto-immunes telles que la polyarthrite rhumatoïde sont associées à des taux d'IL-6 anormalement élevés.

enter image description here

Comment agit-elle?

L'IL-6 avait été précédemment classée en tant que cytokine proinflammatoire, mais les effets anti-inflammatoires (bénéfiques) des myokines en général de l'interleukine 6 d'origine musculaire, sont maintenant reconnus. On a donc une cytokine qui peut avoir deux modes, l'un bénéfique, l'autre délétère, comment cela est-il possible?

L'explication pourrait être que les voies de signalisation en amont et en aval de l'IL-6 diffèrent nettement entre les myocytes et les macrophages. Il semble que contrairement à la signalisation de l'IL-6 dans les macrophages, qui dépend de l'activation de la voie de signalisation NFκB, l'expression intramusculaire de l'IL-6 est régulée par un réseau de cascades de signalisation, comprenant les voies Ca2+/NFAT et glycogène/p38 MAPK.

L'IL6 possède 2 paradigmes de signalisation: la signalisation classique IL6 et la transsignalisation IL6. Bien que la signalisation classique de l'IL6 se produise par le biais de récepteurs à l'IL6 liés à la membrane, la retransformation de l'IL6 est induite par une augmentation systémique et localisée du récepteur extracellulaire de l'IL6 soluble (sIL6R) générée par un clivage protéolytique, appelé «délestage,» du récepteur à partir de la surface des cellules. Ces récepteurs solubles peuvent être activés par l'IL6 et activer des cascades de signalisation. Ainsi, la trans-signalisation de l'IL6 permet d'activer les voies de signalisation de l'IL6 dans les cellules qui n'expriment pas le récepteur d'IL6.

Il y a-t-il différents réactions à l'IL6 chez les humains?

Chez l’humain, il existe au moins deux allèles pour le récepteur d'IL6 (Asp358Ala, A / C; rs2228145), l’allèle A (Asp358) étant l’allèle principal et l’allèle C (Ala358), l’allèle variant. L'expression du récepteur d'IL6 (IL6R) est favorisée par l'allèle C. Chez les personnes ayant hérités de l'allèle IL6R, l' expression accrue du récepteur améliore à la fois la transsignalisation d'IL6 localisée et systémique en présence d'IL6. Cet allèle est associé avec certaines maladies comme l'asthme.

Pourquoi IL6 aurait-elle un intérêt dans le traitement de la SLA?

Peut-être parce qu’il a été rapporté qu’un malade de la SLA avait connu une rémission en 2014 en consommant de la lunasine, un peptide de soja, des chercheurs se sont demandés si la transsignalisation de l’IL6 pourrait jouer un rôle potentiel dans la SLA.

Comment ont procédés les scientifiques?

Les niveaux d’IL6 et de sIL6R ont été mesurés dans des échantillons dans une cohorte de patients atteints de SLA et comparés à des patients en bonne santé. Leurs résultats suggèrent que l'allèle IL6R C influence la signalisation de l'IL6 dans le système nerveux central des patients atteints de SLA. Dans une deuxième cohorte de sujets atteints de SLA avec des données cliniques plus définies, la présence de l'allèle IL6R C était associée à une progression plus rapide de la maladie. Ces résultats suggèrent que l'identification des patients possédant l'allèle IL6R C pourrait fournir des informations utiles pour prédire la progression de la maladie et identifier ceux qui pourraient bénéficier le plus des traitements bloquant l'IL6R.

Que c'était-il passé en 2014

Les spécialistes du domaine de la SLA se rappelleront qu’en 2014, Mike McDuff qui est atteint de la SLA, avait constaté des améliorations spectaculaires de son élocution, de sa déglutition et de la force de ses membres lors d'un régime contenant de la lunasine.

Le dr Bedlack de la clinique SLA Duke, avait alors confirmé que les symptomes de Mike McDuff avait effectivement connu une amélioration spectaculaire. Un essai clinique a alors été réalisé pour évaluer l'intérêt de la lunasine dans le cas de la SLA. Cinquante personnes atteintes de SLA ont été mises sous le régime contenant exactement la lunasine que Mike McDuff avait suivi et ont été suivies pendant un an. L’essai clinique s'est terminé en septembre 2017. Malheureusement, rien n'indique que la lunasine ait ralenti, arrêté ou inversé la SLA chez les participants à l’essai clinique. Les effets indésirables gastro-intestinaux étaient plus fréquents que prévu chez les participants à l'essai, y compris des cas de constipation suffisamment graves pour justifier une hospitalisation.

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

To study immune cells, we must take into account their environment

- Posted by admin in English

Living organisms use energy in a radically different way than immune cells in vitro.

For years, scientists have used cells grown in Petri dishes to study the metabolic processes that fuel the immune system. But a new article suggests that living organisms use energy in a radically different way from immune cells in vitro.

The scientific consensus since Warburg's work is that immune cells, called T cells, convert glucose into energy to fuel cellular function. In fact there are different mechanisms by which a cell can get energy, the so-called metabolism or also respiration.

How do the cells get energy?

On the one hand, we distinguish anabolism, which represents all the biosynthetic pathways of cellular constituents, and on the other hand, catabolism, which represents all the pathways of degradation of these cellular constituents into small molecules to release their energy by oxidation or to rebuild other cellular constituents.

Catabolism can be differentiated between aerobic and anaerobic respiration. Aerobic respiration includes glycolysis, oxidative decarboxylation of pyruvate, citric acid cycle, oxidative phosphorylation.

The main degradation pathway is glycolysis, where sugars such as glucose and fructose are converted to pyruvate and generate ATP. Pyruvate is an intermediate in several metabolic pathways, but the majority is converted to acetyl-CoA by aerobic glycolysis (with oxygen) and introduced into the citric acid cycle.

Lipids are catabolized by hydrolysis to free fatty acids and glycerol. Glycerol enters glycolysis and the fatty acids are decomposed by beta-oxidation to release acetyl-CoA, which is then introduced into the citric acid cycle.

There are two important microbial methane formation pathways, by carbonate reduction (respiration) and acetate fermentation.

Warburg hypothesized that cancer growth is caused by energy-generating tumor cells (such as, for example, adenosine triphosphate / ATP) primarily through anaerobic degradation of glucose (called fermentation or anaerobic respiration). This contrasts with healthy cells, which primarily generate energy from the oxidative decomposition of pyruvate. Pyruvate is a final product of glycolysis and is oxidized in mitochondria. Therefore, according to Warburg, cancer should be interpreted as mitochondrial dysfunction.

For multicellular organisms, during brief periods of intense activity, muscle cells use fermentation to supplement ATP production from slower aerobic respiration.

What was discovered?

Jones and colleagues found that T cells in a living system use glucose as a building block for DNA replication and other maintenance tasks, in addition to converting glucose into raw energy. They also discovered that the way T cells treat glucose evolves during an immune response. The metabolism of glucose in T cells changes dynamically during an immune response. Glucose-dependent serine biosynthesis promotes T-cell proliferation in vivo.

enter image description here

This suggests that T cells can use resources differently in the body when they are fighting a bacterial infection such as Listeria or a disease like cancer.

Naïve CD8+ T cells differentiating into effector T cells increase glucose uptake and transition from resting metabolism to anabolic metabolism. Although much is known about the metabolism of cultured T cells, the way in which T cells utilize nutrients during the in vivo immune response is less well defined. The researchers therefore combined the bioenergetic profiling and 13C glucose perfusion techniques to study the metabolism of CD8+ T cells responding to Listeria infection.

In contrast to the in vitro activated T cells, which exhibit Warburg metabolism, physiologically activated CD8+ T cells exhibited higher levels of oxidative metabolism, higher bioenergetic capacity, differential pyruvate utilization, and high 13C carbon flux. glucose to the anabolic pathways, including the biosynthesis of nucleotides and serine. The glucose-dependent serine biosynthesis induced by the Phgdh enzyme was essential for the expansion of CD8+ T cells in vivo.

Our immune cells do not work in isolation

"It's like watching animal behavior in a zoo or in the wild - our immune cells do not work in isolation - they work with a host of other cells and factors that influence how and when they are used. of energy, "said Russell Jones, Ph.D., lead author of the study and head of the Metabolic and Nutritional Programming Group at the Van Andel Institute. "Understanding cell metabolism is a crucial part of therapeutic development, and our results reinforce the need to study these cells in an environment as close as possible to nature."

The findings have profound implications for how scientists study the complex and interconnected systems that underlie health and disease and how they translate this information into new diagnostic and treatment strategies.

"Immune cells react much more dynamically to infections and diseases than we previously thought," Jones said. "For a while, we're at a stage of metabolism research, it's like we're in the dark under a lamppost, we could only see in front of us, and these results will help us better understand this. which immune cells need for optimal function. "

Which suite will be given?

The results were made possible by a new method developed by collaborator Ralph DeBerardinis, MD, Ph.D., which allowed Jones and his colleagues to map how T cells use nutrients in living organisms. They have developed an infusion method to study T cell metabolism in vivo

"In the future, this new mapping technique will be invaluable in pursuing studies of specific diseases," said Eric Ma, Ph.D., lead author of the study and a postdoctoral researcher in the field. Jones's laboratory.

In the future, the team plans to design human studies to measure how T cells use glucose and other nutrients when they respond to pathogens or other diseases such as injuries or diseases such as cancer.

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

Vascularization of brain organoids and Alzheimer's

- Posted by admin in English

History of brain organoids

Cerebral organoids have provided a means of generating complex, three-dimensional and in vitro models of human neurons that summarize, in part, neuronal diversity and aspects of the physical architecture of the developing brain, such as stratification.

The researchers led by Lancaster generated the first cortical organoids in 2013. They seeded stem cells in a three-dimensional matrix with a nutrient bath. Within a month, the cells have differentiated and formed small structures of a few millimeters, looking like miniature brains. These cell layers mimicked structures such as the hippocampus and cerebral cortex. Without blood supply, however, the neurons at the center of these organoids decayed and eventually died.

The brain organoids as models

The organoids of the human brain have become a promising model for the study of neural development and neurological disorders, including Alzheimer's disease. This model has enormous potential for testing therapeutic agents and determining their permeability across the blood-brain barrier.

However, it remains difficult to generate an authentic model that summarizes the complex structure and function of the human brain. Brain organoids can not fully capture the cellular diversity of the brain. The absence of microglia and blood vessels is particularly troublesome, if one wants to apply these organoids to the study of Alzheimer's disease. The absence of a vascular system causes the organoids to become limited in size and contain a largely necrotic nucleus due to the inability of the nutrient fluid to enter the center of the structure.

What is the contribution of Cakir and his colleagues?

Cakir and his colleagues established an organo-cerebral model with a vascular-like system that works in implanted mice. This system is unique in many respects compared to previously published brain organoids.

They generated vascularized human cortical organoids by expressing an endothelial transcription factor. They discovered that such human cortical organoids developed a complex vascular network. The vascularized human cortical organoids were in good health compared to nonvascularized equivalent organoids.

enter image description here

When the authors compared cellular transcriptomes, they found that vascularized human cortical organoids expressed more mature neuronal markers, as well as markers of other cell types, particularly those involved in the formation of neurovascular units. including tight junction markers, astrocyte and pericytic proteins, and transporters.

Application to Alzheimer's disease

In addition, the treatment of vascularized human cortical organoids with oligomeric Aβ42 resulted in tight junction malformation and disruption of the blood-brain barrier, indicating that the blood-brain barrier structure responds to exogenous factors. The vascularized human cortical organoids were grafted into mice and formed functional vascular connections with the host mouse.

With respect to Alzheimer's disease, the authors have shown that oligomeric synthetic Aβ preparations selectively perturb the permeability of the blood-brain barrier in their vascularized human cortical organoids. An interesting question is: Is it possible that high levels of oligomeric Aß could compromise cerebrovascular integrity and allow therapeutic biological products and small molecules to pass freely across the blood-brain barrier of patients with Alzheimer's disease?

How to apply brain organoids technology to the study of neurodegenerative diseases?

First, given the known variability among organoids, future studies should address the fundamental issue of reproducibility and functional homogeneity. In addition, the current method for modeling fetal brain-like organoids may be somewhat limited for summarizing a mature brain environment. The vasculature of the adult brain is much more complex, including in the perivascular spaces, which contribute to the elimination of toxic solutes such as Aβ.

The incorporation of iPSC microglia into organoids (Abud et al., 2017), paves the way for the creation of complex, multicellular and human in vitro models to study the mechanisms of non-cellular autonomic diseases in Alzheimer.

It will be very interesting now to investigate whether the blood vessels are able to constrict and dilate, if the pericytes can contract and relax, if the vascularized human cortical organoids would be useful for studying neurovascular coupling, if there is venous and arterial flow and many others questions. The next years of research using vascularized brain organoids will provide more answers and will undoubtedly enable many breakthroughs in the cerebrovascular field.

http://www.ncbi.nlm.nih.gov/pubmed/31591580

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

Vascularisation d'organoïdes cérébraux et Alzheimer

- Posted by admin in Français

Histoire des organoïdes cérébraux

Les organoïdes cérébraux ont fourni un moyen de générer des modèles complexes, tridimensionnels et in vitro de neurones humains qui récapitulent, en partie, la diversité neuronale et des aspects de l’architecture physique du cerveau en développement, tels que la stratification.

Les chercheurs emmenés par Lancaster ont généré les premiers organoïdes corticaux en 2013. Ils ont ensemencé des cellules souches dans une matrice tridimensionnelle dans un bain nutritif. En l’espace d’un mois, les cellules se sont différenciées et ont formé de petites structures de quelques millimètres, de type cerveau. Ces couches cellulaires possédées imitaient des structures telles que l’hippocampe et le cortex cérébral. Sans apport sanguin, cependant, les neurones situés au centre de ces organoïdes dépérissaient et finissaient par mourir.

Les organoïdes cérébraux comme modèles

Les organoïdes du cerveau humain sont devenus un modèle prometteur pour l’étude du développement neural et des troubles neurologiques, y compris la maladie d’Alzheimer. Ce modèle a un potentiel énorme pour tester les agents thérapeutiques et déterminer leur perméabilité à travers la barrière hémato-encéphalique.

Cependant, il reste difficile de générer un modèle authentique qui récapitule la structure complexe et la fonction du cerveau humain. Les organoïdes cérébraux ne peuvent capturer pleinement la diversité cellulaire du cerveau. L’absence de microglie et de vaisseaux sanguins est particulièrement gênante, si l’on veut appliquer ces organoïdes à l’étude de la maladie d’Alzheimer. L’absence de système vasculaire fait que les organoïdes deviennent limités en taille et contiennent un noyau en grande partie nécrotique en raison de l’incapacité du fluide nutritif à pénétrer au centre de la structure.

Quel est l’apport de Cakir et ses collègues ?

Cakir et ses collègues ont établi un modèle organo-cérébral portant un système de type vasculaire qui fonctionne chez les souris implantées. Ce système est unique à bien des égards comparé aux organoïdes cérébraux publiés antérieurement.

Ils ont généré des organoïdes corticaux humains vascularisés en exprimant un facteur de transcription endothélial. Ils ont découvert que les organoïdes corticaux humains vascularisés développaient un réseau complexe de type vasculaire. Les organoïdes corticaux humains vascularisés étaient en bonne santé par rapport aux organoïdes équivalent non vascularisés .

enter image description here

Lorsque les auteurs ont comparé les transcriptomes unicellulaires, ils ont constaté que les organoïdes corticaux humains vascularisés exprimaient des marqueurs neuronaux plus matures, ainsi que des marqueurs d’autres types de cellules, en particulier ceux impliqués dans la formation d’unités neuro-vasculaires, notamment des marqueurs à jonction serrée, des protéines astrocytaires et péricytiques, et des transporteurs.

Application à la maladie d’Alzheimer

En outre, le traitement des organoïdes corticaux humains vascularisés avec de l’Aβ42 oligomère a entraîné la malformation de jonctions serrées et la perturbation de la barrière hémato-encéphalique, ce qui montre que la structure de type barrière hémato-encéphalique répond à des facteurs exogènes. Les organoïdes corticaux humains vascularisés ont pu être greffé chez des souris et ont formé des connexions vasculaires fonctionnelles avec la souris hôte.

En ce qui concerne la maladie d’Alzheimer, les auteurs ont montré que des préparations d’Aβ synthétiques oligomères perturbaient sélectivement la perméabilité de la barrière hémato-encéphalique dans leurs organoïdes corticaux humains vascularisés. Une question intéressante est alors la suivante: est-il possible que des niveaux élevés d’Aß oligomérique puissent compromettre l’intégrité cérébrovasculaire et permettent aux produits biologiques thérapeutiques et aux petites molécules de passer librement à travers la barrière hémato-encéphalique dans le cerveau de patients atteints de la maladie d’Alzheimer?

Comment appliquer la technologie des organoïdes cérébraux à l’étude des maladies neurodégénératives ?

Tout d’abord, étant donné la variabilité connue entre les organoïdes, les futures études devraient aborder la question fondamentale de la reproductibilité et de l’homogénéité fonctionnelle. En outre, la méthode actuelle pour modéliser des organoïdes ressemblant à un cerveau fœtal, est peut-être quelque peu limité pour la récapitulation d’un environnement cérébral mature. La vasculature du cerveau adulte est beaucoup plus complexe, y compris dans les espaces périvasculaires, qui contribuent à l’élimination des solutés toxiques tels que l’Aβ.

L’incorporation de la microglie iPSC dans les organoïdes (Abud et ses collègues, 2017), ouvrent la voie à la création de modèles in vitro complexes, multicellulaires et humains, permettant d’étudier les mécanismes de maladies autonomes non cellulaires dans la maladie d’Alzheimer.

Il sera très intéressant de rechercher maintenant si les vaisseaux sanguins sont capables de se resserrer et de se dilater, si les péricytes peuvent se contracter et de se détendre, si les organoïdes corticaux humains vascularisés seraient utiles pour étudier le couplage neurovasculaire, s’il existe un flux veineux et artériel et bien d’autres. Les prochaines années de recherche utilisant des organoïdes cérébraux vascularisés apporteront davantage de réponses et constitueront sans aucun doute une avancée décisive dans le domaine cérébrovasculaire.

http://www.ncbi.nlm.nih.gov/pubmed/31591580

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

Status of Amyotrophic Lateral Sclerosis Research

- Posted by admin in English

I did published a book on ALS research:

Caveats: I am not a doctor, nor a scientist and English is not my mother-tongue.

Here are some take home points:

  • Scientists are obsessed by SOD1 (2% of all ALS cases) as a model for ALS. However there is overwhelming evidence this is a fruitless pursuit.

  • There are nearly no treatments:

    • For all pALS, a very imperfect treatment is Nurown, but it exists!
    • For SOD1 pALS (2% of all cases), there are two treatments that are in clinical trials.
    • For the other (98%) pALS there are no drugs in the pharmaceutical pipeline. However for most pALS (TDP-43 / 95% of all cases) there are genetic therapies that have recently been published by scientists, but if no one tries to defend them, it will take another 10 years before they are marketed.
  • The ALS research is bizarre, scientists often contradict colleagues but nobody seems to care. The consensus still cites theories that have been disproved since decades, like glutamate excitotoxicity. ALS is certainly not one homogeneous disease, but it is still treated as such by scientists. Animal models of ALS have little value in translation of drugs to humans, but moreover often ALS research is done on insects (that have an exoskeleton), or even on unicellular organisms. There is no formalism anywhere, little effort to falsify any thesis.

What can you expect to find in this book:

  • A brief description of ALS and its common variants (PLS, PMA, etc): ~7 pages

  • A description of the cell in general, from an ALS point of view : ~15 pages

  • A strong focus on the neuronal cells, again with ALS in mind: ~34 pages

  • The main themes in ALS research (dying forward, excitotoxicity, virus, etc): ~40 pages

  • Main achievements of ALS research (SOD1, TDP-43, discovery, etc): ~113 pages

  • A focus on clinical trials and 28 drugs: ~37 pages

  • Different kind of therapies (MSC, ASO, etc): ~20 pages

  • A possible new therapy for ALS (if only a company had the will to investigate it!): ~20 pages

  • Futures therapies that are researched now (creating or grafting new neurons): ~17 pages

This is not an easy read, so I tried to explain terms, provide a large section on the neuronal cell at the beginning, and wrote 276 footnotes.

There are no speculations, nor pseudo scientific babble. I am not overly kind either with ALS scientists, clearly they can do much better.

Jean-Pierre Le Rouzic

My book on ALS research

les organismes vivants utilisent l'énergie de façon radicalement différente de la façon de celle des cellules immunitaires in-vitro.

Pendant des années, les scientifiques ont utilisé des cellules cultivées dans des boîtes de Pétri pour étudier les processus métaboliques qui alimentent le système immunitaire. Mais un nouvel article suggère que les organismes vivants utilisent l'énergie de façon radicalement différente de la façon de celle des cellules immunitaires in-vitro.

Le consensus scientifique depuis les travaux de Warburg, est que les cellules immunitaires, appelées cellules T, convertissent du glucose en énergie pour alimenter la fonction cellulaire. En fait il y a différents mécanismes par lequel une cellule peut obtenir de l'énergie, ce que l'on appelle métabolisme ou aussi respiration.

Comment les cellules acquièrent-elle de l'énergie?

on distingue d'une part l'anabolisme, qui représente l'ensemble des voies de biosynthèse des constituants cellulaires, et d'autre part le catabolisme, qui représente l'ensemble des voies de dégradation de ces constituants cellulaires en petites molécules pour en libérer l'énergie par oxydation ou pour rebâtir d'autres constituants cellulaires.

On peut différencier le catabolisme en respiration aérobie et anaérobie. La respiration aérobie comprend la glycolyse, la décarboxylation oxydante du pyruvate, le cycle de l'acide citrique, la phosphorylation oxydative.

La principale voie de dégradation est la glycolyse, où des sucres tels que le glucose et le fructose sont convertis en pyruvate et génèrent de l'ATP. Le pyruvate est un intermédiaire dans plusieurs voies métaboliques, mais la majorité est convertie en acétyl-CoA par glycolyse aérobie (avec oxygène) et introduite dans le cycle de l'acide citrique.

Les lipides sont catabolisés par hydrolyse en acides gras libres et en glycérol. Le glycérol entre dans la glycolyse et les acides gras sont décomposés par bêta-oxydation pour libérer de l'acétyl-CoA, qui est ensuite introduit dans le cycle de l'acide citrique.

Il existe deux voies de formation de méthane microbiennes importantes, par réduction du carbonate (respiration) et fermentation par l'acétate.

Warburg a émis l'hypothèse que la croissance du cancer est causée par des cellules tumorales générant de l'énergie (comme, par exemple, l'adénosine triphosphate / ATP) principalement par la dégradation anaérobie du glucose (appelée fermentation ou respiration anaérobie). Cela contraste avec les cellules saines, qui génèrent principalement de l'énergie à partir de la décomposition oxydante du pyruvate. Le pyruvate est un produit final de la glycolyse et est oxydé dans les mitochondries. Par conséquent, selon Warburg, le cancer devrait être interprété comme un dysfonctionnement mitochondrial.

Pour les organismes multicellulaires, lors de brèves périodes d'activité intense, les cellules musculaires utilisent la fermentation pour compléter la production d'ATP à partir de la respiration aérobie plus lente.

Qu'est-ce qui a été découvert?

Jones et ses collègues ont découvert que les cellules T dans un système vivant utilisent le glucose comme éléments de base pour la réplication de l'ADN et d'autres tâches de maintenance, en plus de la conversion du glucose en énergie brute. Ils ont également découvert que la façon dont les cellules T traitent le glucose évolue au cours d'une réponse immunitaire. Le métabolisme du glucose dans les cellules T change de façon dynamique au cours d'une réponse immunitaire. La biosynthèse de la sérine dépendante du glucose favorise la prolifération des lymphocytes T in vivo.

enter image description here

Ce qui suggère que les cellules T peuvent utiliser les ressources de manière différente dans le corps lorsqu’elles combattent une infection bactérienne telle que Listeria ou une maladie comme le cancer.

Les cellules T naïves CD8 + se différenciant en cellules T effectrices augmentent l'absorption du glucose et le passage du métabolisme au repos au métabolisme anabolique. Bien que l'on en sache beaucoup sur le métabolisme des cellules T en culture, la façon dont les cellules T utilisent les nutriments au cours de la réponse immunitaire in vivo est moins bien définie. Les chercheurs ont donc combiné les techniques de profil bioénergétique et de perfusion de glucose 13C pour étudier le métabolisme des lymphocytes T CD8 + répondant à une infection par Listeria.

Contrairement aux cellules T activées in vitro, qui présentent le métabolisme de Warburg, les cellules T CD8 + activées physiologiquement présentaient des taux plus élevés de métabolisme oxydatif, une capacité bioénergétique plus élevée, une utilisation différentielle du pyruvate et un flux important du carbone 13C-glucose vers les voies anaboliques, y compris la biosynthèse des nucléotides et de la sérine. La biosynthèse de la sérine dépendante du glucose induite par l’enzyme Phgdh était essentielle à l’expansion des cellules T CD8 + in vivo.

Nos cellules immunitaires ne fonctionnent pas en vase clos

"Cela revient à observer le comportement des animaux dans un zoo ou dans la nature. Nos cellules immunitaires ne fonctionnent pas en vase clos - elles travaillent de concert avec une foule d'autres cellules et facteurs qui influencent le mode et le moment d'utilisation de l'énergie, "a déclaré Russell Jones, Ph.D., auteur principal de l'étude et responsable du groupe de programmation métabolique et nutritionnelle de l'Institut Van Andel. "Comprendre le métabolisme cellulaire est un élément crucial du développement thérapeutique. Nos résultats renforcent la nécessité d'étudier ces cellules dans un environnement aussi proche que possible de la nature."

Les résultats ont des implications profondes sur la façon dont les scientifiques étudient les systèmes complexes et interconnectés qui sous-tendent la santé et la maladie et sur la manière dont ils traduisent ces informations en de nouvelles stratégies de diagnostic et de traitement.

"Les cellules immunitaires réagissent de manière beaucoup plus dynamique aux infections et aux maladies que nous ne le pensions auparavant", a déclaré Jones. "Pendant un certain temps, nous en sommes à un stade de la recherche sur le métabolisme, c'est comme si nous étions dans l'obscurité sous un réverbère. Nous ne pouvions voir que devant nous. Ces résultats nous aideront à mieux comprendre ce dont les cellules immunitaires ont besoin pour une fonction optimale ".

Quelle suite va être donnée?

Les résultats ont été rendus possibles grâce à une nouvelle méthode mise au point en consultation avec son collaborateur Ralph DeBerardinis, M.D., Ph.D., qui a permis à Jones et ses collègues de cartographier la manière dont les cellules T utilisent les nutriments dans des organismes vivants. Ils ont mis au point d'une méthode de perfusion 13C pour étudier le métabolisme des cellules T in vivo

"A l'avenir, cette nouvelle technique de cartographie sera d'une valeur inestimable dans la poursuite d'études sur des maladies spécifiques", a déclaré Eric Ma, Ph.D., premier auteur de l'étude et chercheur postdoctoral dans le laboratoire de Jones.

À l’avenir, l’équipe prévoit de concevoir des études sur l’homme afin de mesurer la manière dont les cellules T utilisent le glucose et d’autres nutriments lorsqu’elles réagissent à des agents pathogènes ou à d’autres atteintes telles que des blessures ou des maladies telles que le cancer.

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.


Please, help us continue to provide valuable information: