La découverte du lien entre SOD1 et SLA

- Posted by

1993: Première publication sur un lien entre SOD1 et SLA

biologie moléculaire

Cette découverte se produit à un moment où la biologie moléculaire occupe une place de plus en plus importante dans les publications, les créations de laboratoire et les offres de postes. Le consensus est alors que la biologie moléculaire a un pouvoir d'explication incroyable et une facilité à créer des traitements ad hoc au moyen de thérapies génétiques relativement simple. C’est donc un outil pour permettre la création rapide de brevets et de richesses. Cet engouement était similaire à celui que l’on a vu récemment pour Crispr-cas9.

Réception de l'article

Au début des années 80, il y a des recherches pour essayer de mettre en évidence si SOD1 est impliqué dans le syndrome de Down. SOD1 est en effet sur le chromosome 21, tout comme le gène APP, dont on dit qu’il participe à l’apparition des plaques amyloïdes de la maladie d’Alzheimer et DSCR1 qui est le gène maintenant impliqué dans la maladie de Down.

Dès la publication en 1993 du premier article par Daniel Rosen et Teepu Siddique, à propos de la découverte du lien entre des mutations de SOD1 et la SLA, la revue Nature a publié un commentaire enthousiaste sous le titre « Did radicals strike Lou Gehrig ? ». On reliait ainsi bizarrement ce que la publicité des cosmétiques matraquait sur les écrans, à une des maladies qui fait le plus peur avec le cancer. Le même commentaire introduit aussi le terme « exitotoxicity ».

Quel est le rôle de SOD1?

SOD1 est l’un des trois superoxydes dismutases responsables de la destruction des radicaux superoxydes libres dans le corps. SOD1, compte tenu de son rôle d’antioxydant, a contribué à promouvoir l’idée que les espèces réactives de l’oxygène, sont à l’origine de la SLA. Une mutation de SOD1 ferait perdre cette fonction antioxydante et ainsi petit à petit, les neurones moteurs mourraient. Les espèces réactives de l'oxygène (ROS), telles que les peroxydes et les radicaux libres, sont les produits hautement réactifs de nombreux processus cellulaires normaux, notamment les réactions mitochondriales qui produisent le métabolisme de l'ATP et de l'oxygène. Des exemples de ROS comprennent le radical hydroxyle OH, H2O2 et le superoxyde (O2). Certains ROS sont importants pour certaines fonctions cellulaires, telles que les processus de signalisation cellulaire et les réponses immunitaires contre les substances étrangères. Les radicaux libres sont réactifs, car ils contiennent des électrons libres non appariés; ils peuvent facilement oxyder d'autres molécules dans la cellule, causant des dommages cellulaires et même la mort cellulaire. On pense que les radicaux libres jouent un rôle dans de nombreux processus destructeurs du corps, du cancer à la maladie coronarienne.

Des auteurs qui expriment les limites de leur découverte

Dans ce premier article Rosen et Siddique expliquent qu’il n’est pas clair pourquoi un dysfonctionnement de SOD1 affecterait seulement les neurones moteurs. Rosen et Siddique indiquent également qu’il est curieux que les mutations trouvées puissent expliquer l’héritabilité de la SLA familiale, car les pertes de fonctions sont récessives plutôt que dominantes. Les mutations de SOD1 n’expliquent pas non plus la propagation de la maladie, mais Rosen et Siddique n’abordent pas ce point. Ils signalent une voie thérapeutique qui n’a jamais été essayée car assez farfelue sur le plan physiologique : Introduire du SOD1 non muté dans le système nerveux central des malades ayant une mutation de SOD1.

Quelle conséquence cet article a-t-il eu sur le cours de la recherche?

Cet article et la publicité qui lui a été donné par la presse scientifique, a détourné, durant presque 20 ans, la recherche sur la SLA, des granules de protéines mal repliées, qui date des années 80 et qui est aujourd'hui l'explication consensuelle. Cette explication a malheureusement été étendue aux cas sporadiques de SLA, même si, dès 1998, il avait été découvert que la protéine SOD1 créait des protéines mal repliées et mal localisées. Cette explication a été érodée à partir de 2006 où la découverte de l'implication de TDP-43 dans 95% des cas de SLA et 2011 avec la découverte de C9orf72 comme cause principale de la SLA familiale.

Il n’est pas sûr que cet article recevrait aujourd’hui le même accueil enthousiaste, d’abord le fond de l’article repose juste sur une corrélation entre 13 familles qui avaient un génome différent de celui d’individus sains. Il n’est jamais mentionné combien d’individus cela concerne. Non seulement cela représente un petit groupe non significatif sur le plan statistique, non seulement arguer d’une corrélation n’a rien de scientifique, mais il n’y a pas de contre expérience pour essayer de rejeter l’hypothèse.

Mais si on demande aujourd'hui à un professionnel quel est le principal gène impliqué dans la SLA, il y a hélas de fortes chances qu'il réponde "SOD1".

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.



Please, help us continue to provide valuable information: