Re-use of drug already marketed for ALS.

- Posted by admin in English

Is it possible that a medication treating congestive heart failure can improve the breathing of people with ALS? Or that a drug used to treat cancer could reduce motor neuron inflammation and possibly slow the progression of the disease?

The reuse of drugs is not a new idea. Many drugs have found a new function - for example tamoxifen, originally developed to treat breast cancer, is now used in the treatment of bipolar disorder.

So, how can a medicine that treats a disease, act for another disease?

Obviously, once a drug enters the body, we have little control over its delivery. Although it can be designed to treat, for example, kidney cells, it also travels and interacts in other places. It is these "non-targeted" effects that cause the side effects of drugs. Sometimes, however, this disruption can have positive effects and it is these beneficial results that drug reuse attempts to exploit.

However, we can not take an approved medicine and give it to people with another disease simply because we think it could work for them. Pre-clinical tests and clinical trials are still needed. A safe dose must be established for the new therapeutic target, a certain degree of efficacy must be established, and we need to understand the benefits and risks before the drug can be made available as a new treatment.

MIROCALS - IL-2: From cancer treatment to motor neuron protection

This trial tests interleukin-2 (IL-2), a drug already used to treat some forms of cancer. IL-2 is naturally produced by the body. Its main role is to promote the production of regulatory T cells (or Tregs) - a part of the immune system that is thought to play a role in protecting nerve cells from damage. IL-2 can increase blood levels of Treg and could protect motor neurons in ALS, slowing the progression of the disease.

Studies have already identified the lowest dose of IL-2 that still triggers an increase in Treg without serious side effects.

The goal of this phase 2 trial is to evaluate the safety and efficacy of IL-2 and to confirm that altering the immune response by increasing the Treg rate will slow down the progression of ALS. The study will recruit 216 participants and the results are expected in autumn 2021.

TUDCA - a treatment for liver disease that could protect motor neurons from programmed cell death

Tauroursodeoxycholic acid (TUDCA) is a bile acid. Bears contain large amounts of TUDCA in their bile.

TUDCA prevents apoptosis of cells through its inhibitory role in the transport of BAX to mitochondria.

TUDCA is a water-soluble bile salt used in the treatment of cholestasis, a liver disease in which bile acid accumulates in an unhealthy liver, damaging cells by destroying membranes and signaling cell death. TUDCA also appears to reduce the stress of the endoplasmic reticulum (ER), an organelle of the cell that facilitates the folding of proteins. By reducing the stress of the endoplasmic reticulum, TUDCA can protect against neurological damage.

The aim of this phase 3 trial is to evaluate the safety and efficacy of TUDCA as a complementary therapy to riluzole, as measured by ALSFRS-R scores, in 440 people with ALS. complete in the summer of 2022. The ALSFRS-R is used to assess and monitor functional changes in a person with ALS over time. It consists of 12 questions that deal with aspects of the person's daily life, each of which is rated by the person from 4 to 0, with 4 being "normal".

You can find out more about the TUDCA clinical trial on the TUDCA website and on clinicaltrials.gov.

Perampanel - antiepileptic drug that could prevent the toxic accumulation of TDP-43

It was the first antiepileptic drug in the class of selective noncompetitive AMPA receptor antagonists. This medication can lead to serious psychiatric and behavioral changes; it can cause homicidal or suicidal thoughts. In a mouse model of ALS, Perampanel has been shown to prevent motor neuron death by stopping the toxic accumulation of TDP-43 protein. Long-term Perampanel therapy also resulted in a visible improvement in motor function in treated mice.

The aim of this phase 2 trial is to evaluate the effect of Perampanel on disease progression (measured by ALSFRS-R) in 60 people with sporadic ALS. The results are expected for the winter of 2022. To learn more about this trial, go to clinicaltrials.gov.

Ranolazine - the drug against angina pectoris that can be neuroprotective

Used to treat angina pectoris (chest pain), ranolazine works by inhibiting the accumulation of sodium and calcium ions in cells, although the way it treats angina is not fully understood. Calcium ions play an important role in hyperexcitability when neurons "trigger" more than they would normally, causing fasciculations (muscle contractions), one of the first symptoms of ALS. Ranolazine may have a neuroprotective effect by reducing neuronal hyperexcitability, thereby slowing the progression of the disease and reducing the frequency of cramps.

The Phase 2 trial will evaluate the safety and efficacy of ranolazine in 20 people with ALS and is expected to be completed in the summer of 2019. For more information, see clinicaltrials.gov.

Pimozide - an antipsychotic that could improve muscle function

Pimozide is used in the treatment of schizophrenia and in the reduction of uncontrolled muscle tics associated with Tourette's syndrome. It works by decreasing the activity of dopamine, a neurotransmitter that sends messages between brain cells. In people with ALS, motor neuron damage results in disruption of communication between neurons and muscles at the neuromuscular junction (NMJ). Pimozide has been shown to improve communication with NMJ in mice and fish for the purpose of improving muscle function.

This phase 2 study will examine whether pimozide can help slow the progression of ALS in 100 people with the disease. The trial should be completed by the end of 2019 and you can find out more on clinicaltrials.gov.

Rapamycin - the anti-rejection drug that can prevent neurodegeneration

Used to prevent rejection of transplanted organs, rapamycin works by weakening the body's immune system to accept transplanted organs more easily. The neuron's inability to eliminate the accumulation of proteins in the cytoplasm, and an imbalanced function of the immune system that damages motor neurons by neurotoxicity rather than protecting them, are two potential influences in the development of ALS. These two mechanisms represent important therapeutic targets. In neurodegeneration models, rapamycin has been shown to suppress inflammatory neurotoxic responses caused by T cells (T cells are part of the immune system and generally protect nerve cells from damage) and aid in protein breakdown. accumulated in the cytoplasm.

The goal of this phase 2 trial, which will involve 63 people with ALS, is to obtain predictive information for a larger study. Its completion is scheduled for autumn 2019. For more information, see clinicaltrials.gov.

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

Est-il possible qu'un médicament traitant l'insuffisance cardiaque congestive puisse améliorer la respiration des personnes atteintes de SLA? Ou qu'un médicament utilisé pour traiter le cancer pourrait réduire l'inflammation des motoneurones et éventuellement ralentir la progression de la maladie?

La réutilisation de médicaments n'est pas une idée nouvelle. De nombreux médicaments ont trouvé une nouvelle fonction - par exemple le tamoxifène, développé à l'origine pour traiter le cancer du sein, est maintenant utilisé dans le traitement du trouble bipolaire.

Alors, comment un médicament qui traite une maladie peut-il agir pour une autre maladie?

De toute évidence, une fois qu'un médicament pénètre dans l'organisme, nous avons peu de contrôle sur son acheminement. Bien qu'il puisse être conçu pour traiter, par exemple, les cellules du rein, il se rend et interagit également dans d'autres endroits. Ce sont ces effets "non ciblés" qui sont à l’origine des effets secondaires des médicaments. Parfois, cependant, cette perturbation peut avoir des effets positifs et ce sont ces résultats bénéfiques que la réutilisation de médicaments tente d’exploiter.

Cependant, nous ne pouvons pas prendre un médicament approuvé et le donner à des personnes atteintes d’une autre maladie simplement parce que nous pensons que cela pourrait fonctionner pour elles. Des tests pré-cliniques et des essais cliniques sont toujours nécessaires. Une dose sûre doit être établie pour la nouvelle cible thérapeutique, un certain degré d'efficacité doit être constaté et nous devons bien comprendre les avantages et les risques avant que le médicament puisse être rendu disponible en tant que nouveau traitement.

MIROCALS - IL-2: du traitement du cancer à la protection des motoneurones

Cet essai teste l'interleukine-2 (IL-2), un médicament déjà utilisé pour traiter certaines formes de cancer. L'IL-2 est produite naturellement par le corps. Son rôle principal est de promouvoir la production de cellules T régulatrices (ou Tregs) - une partie du système immunitaire censée jouer un rôle dans la protection des cellules nerveuses contre les dommages. Le médicament IL-2 peut augmenter les niveaux de Treg dans le sang et pourrait donc protéger les motoneurones dans la SLA, ralentissant ainsi la progression de la maladie.

Des études ont déjà identifié la dose la plus faible d’IL-2 qui déclenche toujours une augmentation des Treg sans effets secondaires graves.

Le but de cet essai de phase 2 est d’évaluer l’innocuité et l’efficacité de l’IL-2 et de confirmer que la modification de la réponse immunitaire par l’augmentation du taux de Treg ralentira la progression de la SLA. L’étude recrutera 216 participants et les résultats sont attendus à l’automne 2021.

TUDCA - un traitement pour une maladie du foie qui pourrait protéger les motoneurones de la mort cellulaire programmée

L'acide tauroursodésoxycholique (TUDCA) est un acide biliaire. Les ours contiennent de grandes quantités de TUDCA dans leur bile.

TUDCA prévient l'apoptose des cellules grâce à son rôle inhibiteur dans le transport de BAX vers les mitochondries.

TUDCA est un sel biliaire hydrosoluble utilisé dans le traitement de la cholestase, une maladie du foie dans laquelle l'acide biliaire s'accumule dans un foie malsain, endommageant les cellules en détruisant les membranes et en signalant la mort cellulaire. TUDCA semble également réduire le stress du réticulum endoplasmique (ER), un organite de la cellule qui facilite le repliement des protéines. En réduisant le stress du réticulum endoplasmique, TUDCA peut protéger contre les dommages neurologiques.

Le but de cet essai de phase 3 est d'évaluer l'innocuité et l'efficacité de TUDCA en tant que traitement complémentaire au riluzole, mesuré par l'amélioration des scores ALSFRS-R, chez 440 personnes atteintes de SLA et devrait s'achever à l'été 2022. L'ALSFRS -R est utilisé pour évaluer et surveiller les changements fonctionnels chez une personne atteinte de SLA au fil du temps. Il consiste en 12 questions qui traitent d’aspects de la vie quotidienne de la personne, chacune d’elles étant notée par la personne de 4 à 0, 4 étant «normales».

Vous pouvez en savoir plus sur l’essai clinique TUDCA sur le site Web de TUDCA et sur clinicaltrials.gov.

Perampanel - un antiépileptique qui pourrait prévenir l’accumulation toxique de TDP-43

Il s'agissait du premier médicament antiépileptique de la classe des antagonistes sélectifs non compétitifs des récepteurs AMPA. Ce médicament peut entraîner de sérieux changements psychiatriques et comportementaux; il peut provoquer des pensées homicidaires ou suicidaires. Dans un modèle murin de SLA, il a été prouvé que Perampanel empêchait la mort des motoneurones en stoppant l'accumulation toxique de la protéine TDP-43. Un traitement au Perampanel à long terme a également entraîné une amélioration visible de la fonction motrice chez les souris traitées.

Le but de cet essai de phase 2 est d'évaluer l'effet du Perampanel sur la progression de la maladie (mesuré par ALSFRS-R) chez 60 personnes atteintes de SLA sporadique. Les résultats sont attendus pour l'hiver 2022. Pour en savoir plus sur cet essai, allez sur clinicaltrials.gov.

Ranolazine - le médicament contre l'angine de poitrine qui peut être neuroprotecteur

Utilisée pour traiter l'angine de poitrine (douleur thoracique), la ranolazine agit en inhibant l'accumulation d'ions sodium et de calcium dans les cellules, bien que la manière dont cela traite l'angine ne soit pas entièrement comprise. Les ions calcium jouent un rôle important dans l'hyperexcitabilité lorsque les neurones «se déclenchent» plus qu'ils ne le feraient normalement, provoquant des fasciculations (contractions musculaires), l'un des premiers symptômes de la SLA. La ranolazine peut avoir un effet neuroprotecteur en réduisant l'hyperexcitabilité neuronale, ralentissant ainsi la progression de la maladie et en réduisant la fréquence des crampes.

L'essai de phase 2 évaluera l'innocuité et l'efficacité de la ranolazine chez 20 personnes atteintes de SLA et devrait s'achever à l'été 2019. Pour en savoir plus, consultez clinicaltrials.gov.

Pimozide - un antipsychotique qui pourrait améliorer la fonction musculaire

Le pimozide est utilisé dans le traitement de la schizophrénie et dans la réduction des tics musculaires incontrôlés associés au syndrome de Tourette. Il agit en diminuant l’activité de la dopamine, un neurotransmetteur qui permet d’envoyer des messages entre les cellules du cerveau. Chez les personnes atteintes de SLA, les dommages aux motoneurones entraînent une rupture de la communication entre les neurones et les muscles situés à la jonction neuromusculaire (NMJ). Il a été démontré que le pimozide améliore la communication au NMJ chez la souris et le poisson dans le but d'améliorer la fonction musculaire.

Cette étude de phase 2 examinera si le pimozide peut aider à ralentir la progression de la SLA chez 100 personnes atteintes de la maladie. L'essai devrait s'achever à la fin de 2019 et vous pouvez en savoir plus sur clinicaltrials.gov.

Rapamycine - le médicament anti-rejet qui peut prévenir la neurodégénérescence

Utilisée pour prévenir le rejet d’organes greffés, la rapamycine agit en affaiblissant le système immunitaire du corps pour l’accepter plus facilement. L’incapacité du neurone à éliminer l’accumulation de protéines dans le cytoplasme et une fonction déséquilibrée du système immunitaire qui endommage les neurones moteurs (neurotoxicité) plutôt qu'assurer leur protection sont deux influences potentielles dans le développement de la SLA. Ces deux mécanismes représentent des cibles thérapeutiques importantes. Dans des modèles de neurodégénérescence, il a été démontré que la rapamycine peut supprimer les réponses neurotoxiques inflammatoires provoquées par les cellules T (les cellules T font partie du système immunitaire et protègent généralement les cellules nerveuses contre les dommages) et aident à la dégradation des protéines accumulées dans le cytoplasme.

L'objectif de cet essai de phase 2, qui impliquera 63 personnes atteintes de SLA, est d'obtenir des informations prédictives pour une étude de plus grande envergure. Son achèvement est prévu pour l'automne 2019. Pour en savoir plus, consultez la page clinicaltrials.gov.

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.


Please, help us continue to provide valuable information: