La FDA a désigné APB-102, une thérapie génique pour la SLA SOD1, en tant que médicament orphelin

La SLA familiale, qui représente environ 10% de tous les cas de SLA, est héritée en tant que trait dominant. Environ 20% de ces cas résultent de mutations du gène codant pour la superoxyde dismutase 1 Cu / Zn cytosolique (SOD1). On estime que 12 à 23% des patients atteints de SLA familiale et 1 à 3% des patients atteints de SLA sporadique sont porteurs d'une mutation de ce gène; 185 mutations dans SOD1 ont été identifiées. Si la SLA est une maladie rare, chaque mutation de SOD1 est un cas extrêmement improbable, environ une sur 100 000 000!

Une maladie insaisissable

Plusieurs mécanismes ont été proposés pour expliquer pourquoi les protéines SOD1 mutantes sont neurotoxiques, notamment l'observation que la SOD1 mutante acquiert une toxicité par le biais d'une instabilité conformationnelle, d'un repliement erroné et d'un certain degré d'agrégation. À son tour, cela active de multiples événements indésirables, notamment la réponse protéique non repliée, le stress du réticulum endoplasmique (RE), les dommages mitochondriaux, l’excitabilité cellulaire accrue, le transport axonal altéré et certains éléments de mort cellulaire apoptotique et nécrotique. Certaines données suggèrent que la protéine SOD1 mutée mal repliée peut se propager d'une cellule à l'autre, à la manière d'un prion. De plus, il est proposé que le SOD1 mutant puisse causer un mauvais repliement toxique du SOD1 sauvage.

Vers un traitement de la SLA

Les mécanismes pour rendre inopérant SOD1 ont été poursuivi par de nombreux groupes, qui ont utilisé différentes modalités: oligonucléotides antisens (ASO), interférences d'ARN (ARNi), ARNi délivrés par un vecteur viral et CRISPR-Cas9. D'un point de vue clinique, l'un des principaux inconvénients des oligonucléotides antisens et des petits ARN interférents est l'administration répétée de la thérapie, alors que la thérapie génique médiée par le rAAV (incluant le transfert de gènes et le silençage génique basé sur l'ARNi) repose sur un paradigme posologique unique.

Effets secondaires

Les améliorations technologiques permettent aux doses d'oligonucléotides antisens d'être administrées moins fréquemment que par le passé, par exemple chez nusinersen (Spinraza), un oligonucléotides antisens récemment approuvé qui est développé par Biogen et Ionis Pharmaceuticals comme traitement de l'atrophie musculaire spinale. Avec ce médicament, un patient typique recevrait trois doses intrathécales chaque année une fois les doses de charge terminées. Au contraire, AVXS-101, un traitement de thérapie génique développé par AveXis (groupe Novartis) en tant que traitement de la SMA de type 1, a un effet thérapeutique jusqu'à 24 mois après une injection intraveineuse unique d'un vecteur rAAV9. Cependant, AVXS-101 a des effets secondaires tels que des élévations asymptomatiques des enzymes hépatiques. Ces types d’effets indésirables ont été observés lors d’autres essais de thérapie génique.

Qu'a fait Apic Bio?

Une thérapie potentielle pour SOD1 consiste à supprimer l'expression du gène mutant, quelle que soit sa mutation. Cependant, SOD1 a un rôle à jouer et la suppression de son expression, même celle du mutant, créera des effets secondaires. Apic Bio a étudié l'inactivation de SOD1 au moyen d'un virus adéno-associé (AAV) codant pour un microARN artificiel (miARN) qui ciblait SOD1.

Au cours des dernières années, Apic Bio et d’autres ont étudié cette stratégie en profondeur selon diverses modalités. Apic Bio a déjà démontré la caractérisation préclinique de cette approche chez le macaque cynomolgus (Macaca fascicularis) en utilisant un sérotype AAV pour la délivrance qui s'est avéré sûr lors des essais cliniques. Ils ont optimisé l'administration d'AAV dans la moelle épinière par préimplantation d'un cathéter et mise en place du sujet avec la tête baissée à 30 ° pendant la perfusion intrathécale. Les résultats ont démontré une délivrance efficace et une inhibition efficace du gène SOD1 dans les motoneurones. Ces résultats confirment l’idée que la thérapie génique avec un miARN artificiel ciblant SOD1 est sans danger et mérite d’être encore développée pour le traitement de la SLA liée à la SOD1 mutante.

Ils ont sélectionné un vecteur viral adéno-associé recombinant, le sérotype rh.10 (rAAVrh.10), en raison de son excellente transduction du système nerveux central (SNC) et de son profil de sécurité chez les primates non humains. La présence de GFP dans leurs vecteurs a provoqué une toxicité hépatique légère, telle que décrite précédemment, et une réponse immunitaire cellulaire chez deux des huit animaux. Le fait que la réponse immunitaire ne soit pas détectée chez tous les animaux injectés peut s'expliquer par le point de sacrifice précoce (22 jours).

Désignation de médicament orphelin

La Food and Drug Administration (FDA) des États-Unis a attribué à APB-102 la désignation de médicament orphelin. Le programme de médicaments orphelins de la FDA des États-Unis attribue la désignation orpheline à de nouveaux médicaments destinés au traitement de maladies rares (affectant moins de 200 000 personnes aux États-Unis). La désignation offre aux promoteurs des incitations commerciales et de développement, notamment sept années d’exclusivité commerciale aux États-Unis, des consultations de la FDA sur la conception d’études cliniques, le potentiel de développement accéléré de médicaments et certaines exemptions et réductions de frais.

Quelle est la suite?

Avoir une désignation de médicament orphelin dans la SLA ne signifie pas une autorisation de mise sur le marché, plusieurs dizaines de médicaments l’ont obtenu pour la SLA de part le passé. Jusqu'à présent cela a toujours été retiré quelques années plus tard par la FDA, alors qu'il était évident que ces médicaments n'étaient pas du tout efficaces. L'important est maintenant d'attendre les essais cliniques. Pour faire ceux-ci, Apic Bio a besoin de beaucoup de fonds, ils solliciteront probablement des investisseurs. Et dans cette perspective, une désignation de médicament orphelin les aidera beaucoup.

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.




Est-il possible qu'un médicament traitant l'insuffisance cardiaque congestive puisse améliorer la respiration des personnes atteintes de SLA? Ou qu'un médicament utilisé pour traiter le cancer pourrait réduire l'inflammation des motoneurones et éventuellement ralentir la progression de la maladie?

La réutilisation de médicaments n'est pas une idée nouvelle. De nombreux médicaments ont trouvé une nouvelle fonction - par exemple le tamoxifène, développé à l'origine pour traiter le cancer du sein, est maintenant utilisé dans le traitement du trouble bipolaire.

Alors, comment un médicament qui traite une maladie peut-il agir pour une autre maladie?

De toute évidence, une fois qu'un médicament pénètre dans l'organisme, nous avons peu de contrôle sur son acheminement. Bien qu'il puisse être conçu pour traiter, par exemple, les cellules du rein, il se rend et interagit également dans d'autres endroits. Ce sont ces effets "non ciblés" qui sont à l’origine des effets secondaires des médicaments. Parfois, cependant, cette perturbation peut avoir des effets positifs et ce sont ces résultats bénéfiques que la réutilisation de médicaments tente d’exploiter.

Cependant, nous ne pouvons pas prendre un médicament approuvé et le donner à des personnes atteintes d’une autre maladie simplement parce que nous pensons que cela pourrait fonctionner pour elles. Des tests pré-cliniques et des essais cliniques sont toujours nécessaires. Une dose sûre doit être établie pour la nouvelle cible thérapeutique, un certain degré d'efficacité doit être constaté et nous devons bien comprendre les avantages et les risques avant que le médicament puisse être rendu disponible en tant que nouveau traitement.

MIROCALS - IL-2: du traitement du cancer à la protection des motoneurones

Cet essai teste l'interleukine-2 (IL-2), un médicament déjà utilisé pour traiter certaines formes de cancer. L'IL-2 est produite naturellement par le corps. Son rôle principal est de promouvoir la production de cellules T régulatrices (ou Tregs) - une partie du système immunitaire censée jouer un rôle dans la protection des cellules nerveuses contre les dommages. Le médicament IL-2 peut augmenter les niveaux de Treg dans le sang et pourrait donc protéger les motoneurones dans la SLA, ralentissant ainsi la progression de la maladie.

Des études ont déjà identifié la dose la plus faible d’IL-2 qui déclenche toujours une augmentation des Treg sans effets secondaires graves.

Le but de cet essai de phase 2 est d’évaluer l’innocuité et l’efficacité de l’IL-2 et de confirmer que la modification de la réponse immunitaire par l’augmentation du taux de Treg ralentira la progression de la SLA. L’étude recrutera 216 participants et les résultats sont attendus à l’automne 2021.

TUDCA - un traitement pour une maladie du foie qui pourrait protéger les motoneurones de la mort cellulaire programmée

L'acide tauroursodésoxycholique (TUDCA) est un acide biliaire. Les ours contiennent de grandes quantités de TUDCA dans leur bile.

TUDCA prévient l'apoptose des cellules grâce à son rôle inhibiteur dans le transport de BAX vers les mitochondries.

TUDCA est un sel biliaire hydrosoluble utilisé dans le traitement de la cholestase, une maladie du foie dans laquelle l'acide biliaire s'accumule dans un foie malsain, endommageant les cellules en détruisant les membranes et en signalant la mort cellulaire. TUDCA semble également réduire le stress du réticulum endoplasmique (ER), un organite de la cellule qui facilite le repliement des protéines. En réduisant le stress du réticulum endoplasmique, TUDCA peut protéger contre les dommages neurologiques.

Le but de cet essai de phase 3 est d'évaluer l'innocuité et l'efficacité de TUDCA en tant que traitement complémentaire au riluzole, mesuré par l'amélioration des scores ALSFRS-R, chez 440 personnes atteintes de SLA et devrait s'achever à l'été 2022. L'ALSFRS -R est utilisé pour évaluer et surveiller les changements fonctionnels chez une personne atteinte de SLA au fil du temps. Il consiste en 12 questions qui traitent d’aspects de la vie quotidienne de la personne, chacune d’elles étant notée par la personne de 4 à 0, 4 étant «normales».

Vous pouvez en savoir plus sur l’essai clinique TUDCA sur le site Web de TUDCA et sur clinicaltrials.gov.

Perampanel - un antiépileptique qui pourrait prévenir l’accumulation toxique de TDP-43

Il s'agissait du premier médicament antiépileptique de la classe des antagonistes sélectifs non compétitifs des récepteurs AMPA. Ce médicament peut entraîner de sérieux changements psychiatriques et comportementaux; il peut provoquer des pensées homicidaires ou suicidaires. Dans un modèle murin de SLA, il a été prouvé que Perampanel empêchait la mort des motoneurones en stoppant l'accumulation toxique de la protéine TDP-43. Un traitement au Perampanel à long terme a également entraîné une amélioration visible de la fonction motrice chez les souris traitées.

Le but de cet essai de phase 2 est d'évaluer l'effet du Perampanel sur la progression de la maladie (mesuré par ALSFRS-R) chez 60 personnes atteintes de SLA sporadique. Les résultats sont attendus pour l'hiver 2022. Pour en savoir plus sur cet essai, allez sur clinicaltrials.gov.

Ranolazine - le médicament contre l'angine de poitrine qui peut être neuroprotecteur

Utilisée pour traiter l'angine de poitrine (douleur thoracique), la ranolazine agit en inhibant l'accumulation d'ions sodium et de calcium dans les cellules, bien que la manière dont cela traite l'angine ne soit pas entièrement comprise. Les ions calcium jouent un rôle important dans l'hyperexcitabilité lorsque les neurones «se déclenchent» plus qu'ils ne le feraient normalement, provoquant des fasciculations (contractions musculaires), l'un des premiers symptômes de la SLA. La ranolazine peut avoir un effet neuroprotecteur en réduisant l'hyperexcitabilité neuronale, ralentissant ainsi la progression de la maladie et en réduisant la fréquence des crampes.

L'essai de phase 2 évaluera l'innocuité et l'efficacité de la ranolazine chez 20 personnes atteintes de SLA et devrait s'achever à l'été 2019. Pour en savoir plus, consultez clinicaltrials.gov.

Pimozide - un antipsychotique qui pourrait améliorer la fonction musculaire

Le pimozide est utilisé dans le traitement de la schizophrénie et dans la réduction des tics musculaires incontrôlés associés au syndrome de Tourette. Il agit en diminuant l’activité de la dopamine, un neurotransmetteur qui permet d’envoyer des messages entre les cellules du cerveau. Chez les personnes atteintes de SLA, les dommages aux motoneurones entraînent une rupture de la communication entre les neurones et les muscles situés à la jonction neuromusculaire (NMJ). Il a été démontré que le pimozide améliore la communication au NMJ chez la souris et le poisson dans le but d'améliorer la fonction musculaire.

Cette étude de phase 2 examinera si le pimozide peut aider à ralentir la progression de la SLA chez 100 personnes atteintes de la maladie. L'essai devrait s'achever à la fin de 2019 et vous pouvez en savoir plus sur clinicaltrials.gov.

Rapamycine - le médicament anti-rejet qui peut prévenir la neurodégénérescence

Utilisée pour prévenir le rejet d’organes greffés, la rapamycine agit en affaiblissant le système immunitaire du corps pour l’accepter plus facilement. L’incapacité du neurone à éliminer l’accumulation de protéines dans le cytoplasme et une fonction déséquilibrée du système immunitaire qui endommage les neurones moteurs (neurotoxicité) plutôt qu'assurer leur protection sont deux influences potentielles dans le développement de la SLA. Ces deux mécanismes représentent des cibles thérapeutiques importantes. Dans des modèles de neurodégénérescence, il a été démontré que la rapamycine peut supprimer les réponses neurotoxiques inflammatoires provoquées par les cellules T (les cellules T font partie du système immunitaire et protègent généralement les cellules nerveuses contre les dommages) et aident à la dégradation des protéines accumulées dans le cytoplasme.

L'objectif de cet essai de phase 2, qui impliquera 63 personnes atteintes de SLA, est d'obtenir des informations prédictives pour une étude de plus grande envergure. Son achèvement est prévu pour l'automne 2019. Pour en savoir plus, consultez la page clinicaltrials.gov.

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

Dans la sclérose en plaques et plusieurs autres troubles cérébraux, la gaine protectrice entourant les neurones, appelée myéline, se décompose, ce qui perturbe à son tour la transmission des signaux nerveux. Des chercheurs du système de santé VA Maryland et de la faculté de médecine de l’Université du Maryland ont trouvé un nouveau moyen de reconstruire la myéline avec un type de cellule souche qui vit dans les follicules pileux.

Les chercheurs se sont concentrés sur les cellules souches qui créent les mélanocytes, cellules qui produisent les pigments dans les follicules pileux matures. Ils ont découvert que les cellules souches avec une protéine de surface appelée CD34 peuvent se développer dans les cellules gliales qui forment la myéline. Ils décrivent dans la revue PLOS Genetics, comment ils ont implanté des cellules souches CD34 positives chez des souris conçues pour être dépourvues de gaine de myéline, les revêtements protecteurs formés autour de leurs neurones.

Pourquoi les cheveux? Les mélanocytes que l’on trouve dans les cheveux proviennent en réalité de cellules de la crête neurale, qui peuvent également générer des neurones et des cellules gliales, ont expliqué les chercheurs. La même équipe avait précédemment découvert deux populations de cellules souches produisant des mélanocytes dans des follicules pileux matures. Après des recherches plus poussées, ils ont découvert que seules les cellules CD34-positives se sont transformées en cellules gliales.

Les chercheurs pensent que si des cellules souches CD34-positives peuvent être trouvées dans les cheveux, elles pourraient être examinées en tant que source potentielle de nouveaux traitements pour la SEP et d’autres maladies démyélinisantes, ainsi que pour les lésions nerveuses.

Trouver de nouvelles façons de reconstruire la myéline est une priorité pour les chercheurs en neurologie, qui ont étudié diverses idées pour réaliser cet exploit. Des scientifiques de l’Université de Chicago s’emploient à fabriquer un dérivé sans danger d’un ancien médicament contre l’hypertension, le Wytensin (guanabenz), depuis qu’ils ont découvert qu’il protégeait la myéline. D’autres approches se concentrent sur l’utilisation de micro-ARN pour régénérer la myéline et la reprogrammation des cellules de la peau des patients en cellules réparant la myéline.

L’évaluation du potentiel des cellules cutanées dans la réparation de la myéline est également une priorité de l’équipe du Maryland. Ils prévoient de poursuivre des études visant à élucider les sources potentielles, ainsi que les fonctions, de différentes cellules qui contribuent à la protection et à la réparation des neurones.

"A l’avenir, nous prévoyons de poursuivre nos recherches dans ce domaine en déterminant si ces cellules peuvent améliorer la récupération fonctionnelle après une lésion neuronale", a déclaré le co-auteur Thomas Hornyak, MD, Ph.D., professeur agrégé de dermatologie à l’Université de Toronto. Maryland, dans la déclaration. Il a ajouté qu’ils espéraient exploiter l’information contenue dans l’ensemble du génome recueillie dans le cadre de cette étude pour déterminer si des cellules similaires pourraient être générées à partir de cellules cutanées.

Contact the author

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.





Please, help us continue to provide valuable information: