Time-restricted feeding rescues circadian disruption- aggravated progression of Alzheimer's disease in diabetic mice.

- Posted by

Aging is by far the most prominent risk factor for Alzheimer's disease, and both aging and Alzheimer's disease are associated with apparent metabolic alterations. Perturbed cerebral glucose metabolism, an invariant pathophysiological feature of Alzheimer's disease, may be a critical contributor to the pathogenesis of this disease. For this reason, Alzheimer's disease has sometime times being called "Type 3 diabetes mellitus".

Circadian rhythms, type 2 diabetes mellitus and Alzheimer's disease are closely related and interacted with each other.
The authors of a new article on MedRxiv have previously showed circadian disruption aggravated progression of Alzheimer's disease in T2DM mice. Time-restricted feeding is shown to be a potential synchronizer. This study aims to determine whether time-restricted feeding has a protect effect against the circadian disruption-aggravated progression of Alzheimer's disease in type 2 diabetes mellitus.

Six-week-old male diabetic mice and wildtype mice were kept under normal 12:12 light/dark cycles or altered 6:18 light/dark cycles with or without time-restricted feeding period. After eight weeks, three behavioral tests (open field test, novel object recognition test, barnes maze test were performed and the circadian gene expression, body weight, lipid levels and Alzheimer's disease-associated tau phosphorylation were evaluated.
The scientists found altered light/dark cycles contributed to disruptive circadian rhythms in the hippocampus of db/db mice, while time-restricted feeding prevented this effect. time-restricted feeding also ameliorated circadian disruption-aggravated increased body weight and lipid accumulation in db/db mice.

Importantly, the db/db mice under circadian disruption showed impaired cognition accompanied by increased tau phosphorylation, whereas time-restricted feeding reversed these changes. The altered light/dark cycles only affected circadian rhythms but not other indicators like plasma/liver lipids, cognition and tau phosphorylation in the wt/wt mice.

Collectively, time-restricted feeding has a protective effect against altered light/dark cycles-aggravated Alzheimer's disease progression in diabetic mice.

Read the original article on Pubmed

Please, help us continue to provide valuable information: