Often scientists claim to make breakthrough discoveries, while their "findings" are known for many years. This is unsettling for lay persons as most of us, as it questions the real value of scientific publications. Here is another example, it has been known at least for 15 years that microglia phagocytes synapses that this process is mediated with the protein MFG-E8 and that this process is dysregulated in Alzheimer's disease. enter image description here Now scientists are claiming to just have discovered that and their publication was accepted in a prestigious journal.

Alzheimer's disease (AD) is a neurodegenerative condition characterized by cognitive decline and the presence of abnormal protein aggregates in the brain, namely amyloid-β (Aβ) plaques and phosphorylated tau tangles. The accumulation of toxic forms of Aβ and tau contributes to synaptic loss, which is a major factor in AD-related cognitive decline. However, there are currently no effective treatments to prevent synapse degeneration in humans.

Recent research suggests that glial cells in the brain, specifically astrocytes and microglia, play a role in the removal of synapses, a process known as synaptic pruning.

Microglial cells are the main innate immune cells in the complex cellular structure of the brain. These cells respond rapidly to pathogens and injury and accumulate in regions of neurodegeneration, producing a wide variety of inflammatory mediators. Microglia respond to each disruption of homeostasis by rapidly changing form and function. The main physiological function of microglial cells is phagocytosis.

Microglia can adopt multiple phenotypes with unique characteristics depending on their environment. However, the M1 and M2 phenotypes are the most studied to date. The M1 phenotype is considered pro-inflammatory and represents the first line of defense of the innate immune system. Alternatively, M2 microglia are considered anti-inflammatory, with potential functions in tissue repair and remodeling. Microglial involvement has been implicated in many diseases like schizophrenia, Parkinson's disease, Alzheimer's disease, prion diseases and multiple sclerosis.

The study examined human brain tissue from individuals with AD and found that astrocytes and microglia contained more synaptic material in AD brains compared to healthy controls. This effect was more pronounced near Aβ plaques and in individuals with the APOE4 risk gene. In laboratory cultures, both mouse and human glial cells ingested synapses from AD patients more than those from healthy individuals. Inhibiting the interaction of a protein called MFG-E8 reduced this excessive synapse removal by glial cells, suggesting a potential target for therapy.

A milk membrane glycoprotein, MFG-E8 [milk fat globule-EGF (epidermal growth factor) factor 8], is expressed abundantly in lactating mammary glands. But as most of the time with proteins, it has multiple roles. In the peripheral immune system, macrophages secrete Milk Fat Globule Factor-E8 (MFG-E8) that recognizes phosphatidylserine "eat me" signals expressed on the surface of apoptotic cells. MFG-E8 then acts as a tether to attach the apoptotic cell to the macrophage and trigger a signaling cascade that stimulates the phagocyte development, allowing the macrophage to engulf the dying cell. When this process becomes disrupted, inflammation and autoimmunity can result. MFG-E8 resides in the brain as well as in the periphery, and microglia express MFG-E8.

The findings suggest that glial cells in AD patients may be responsible for the excessive removal of synapses, which is associated with cognitive decline. This insight could lead to the development of treatments aimed at preserving healthy synapses in AD patients, potentially improving cognitive function.

Radiation therapy for Alzheimer's disease

- Posted by admin in English

Hormesis is a characteristic of many biological processes, namely a biphasic or triphasic response to exposure to increasing amounts of a substance or condition. Within the hormetic zone, the biological response to low exposures to toxins and other stressors is generally favorable.

Hormesis has been observed in a number of cases in humans and animals exposed to chronic low doses of ionizing radiation. enter image description here A new publication by Korean researchers discusses the current state of treatment for Alzheimer's disease, focusing on pharmacological and non-pharmacological approaches. It mentions that only four drugs (donepezil, rivastigmine, galantamine, and memantine) have been available to Alzheimer's patients. Yet, the improvement in neurological function is almost 0%, and it only slows the rate of cognitive deterioration. A new drug called aducanumab, targeting Aβ plaques, has been approved by the U.S. FDA, but its efficacy and accessibility are debated due to unclear clinical results and high costs.

An alternative approach, low-dose radiation therapy has gained attention after a case report described significant improvement in a patient with advanced Alzheimer's disease who underwent computed tomography (CT) scans of the brain five times. Recently, several preclinical studies based on mouse models revealed a significant reduction in Aβ plaques with low-dose radiation therapy, and low-dose radiation therapy induced the upregulation of pre-and post-synaptic molecules in the brains of Alzheimer's disease mouse models.

For example, a recent study showed that low-dose radiation therapy seems to reduce the levels of pro-inflammatory cytokines in animal models of Alzheimer's disease. Therefore, several pilot studies or clinical trials investigating the effect of low-dose radiation therapy on humans have been launched. Most recently, researchers at Virginia Commonwealth University (VCU) published positive pilot study results showing that four of five patients diagnosed with early Alzheimer's disease experienced improved or stable cognition after treatment with low-dose radiation therapy.

The Korean scientists describe an ongoing clinical trial aiming to explore low-dose radiation therapy as a treatment for Alzheimer's disease. The trial involves evaluating the safety and effectiveness of this therapy and determining appropriate dose schedules. The clinical trial is multicenter and randomized, with patients being divided into different treatment groups.

The study involves rigorous screening tests, including neurological examinations, cognitive function tests, and various imaging and laboratory tests. Eligible patients will receive low-dose radiation therapy in either 6 fractions of 4 cGy or 6 fractions of 50 cGy, while a control group will receive sham irradiation.

The clinical trial aims to evaluate cognitive improvement of at least 5% as an effective response. This would be a huge improvement over existing medications for Alzheimer's disease.

Prédire la démence 25 ans avant son apparition

- Posted by admin in Français

Une étude qui a suivi 10 981 adultes d'âge moyen, a identifié des protéines liées au développement de la démence deux douzaines d'années plus tard. enter image description here Walker et ses collègues se sont demandé s'ils pouvaient trouver des prédicteurs de la démence des années avant son apparition en examinant les dérèglements d'expression du protéome d'une personne, c'est à dire l'ensemble (en fait 4877 protéines) de toutes les protéines exprimées dans tout le corps. Les échantillons ont été prélevés dans le cadre d'une étude en cours qui a débuté en 1987. Les participants sont revenus pour un examen six fois sur trois décennies, et pendant cette période, environ 1 sur 5 d'entre eux a développé une démence.

Les chercheurs ont découvert 32 protéines qui, si elles étaient dérégulées chez les personnes âgées de 45 à 60 ans, étaient fortement associées à un risque élevé de développer une démence plus tard dans la vie. On ne sait pas exactement comment ces protéines pourraient être impliquées dans la maladie, mais il est "très peu probable que le lien soit dû au seul hasard", déclare Walker.

Ces corrélations ont été validées par une analyse de randomisation mendélienne.

Ce qui est intéressant c'est que nombre de ces protéines ne sont pas spécifiques du système nerveux central. Voici la liste des protéines les plus corrélés à l'apparition d'une maladie d'Alzheimer une dizaine d'années avant l'apparition de la démence.

  • GABARAPL1 => autophagy
  • DNAJB9 => ER stress response
  • HSPA1B => cellular stress response
  • GDF15 => cellular stress response
  • SERPINA3 => pathogen elimination
  • CPLX1 => neurotransmitter regulation
  • CPLX2 => neurotransmitter regulation
  • CBLN4 => synaptic plasticity
  • GRID2 => synaptic plasticity
  • EGFR => growth factor associated with cancer and inflammation
  • MMP12 => tissue remodeling
  • MMP19 => tissue remodeling
  • F8 => blood coagulation
  • DNAJB12 => ER stress response
  • FBLN5 => atherosclerotic lesions

Bien que certaines de ces associations étaient connues depuis longtemps, ce qui est intéressant içi c'est l'aspect prédictif ainsi que l'implication du système immunitaire. Ce dernier point renforcera encore la notion que la maladie d'Alzheimer est souvent liée à une ou plusieurs infections.

La maladie d'Alzheimer est la maladie neurodégénérative humaine la plus courante. Bien que l'étiologie de la maladie d'Alzheimer soit mal connue, elle Il est maintenant bien établi que la maladie d'Alzheimer est une maladie multifactorielle du cerveau. Comme pour toutes les maladies non-communicables, on peut considérer différents niveaux, l’un des plus souvent considéré est celui de le biologie moléculaire comme les plaques séniles d’amiloïdes ou les dégénérescences neurofibrillaires.

Cependant, la perte de synapse est considérée comme une neuropathologie profonde de la maladie d'Alzheimer et d'un point de vue clinique, elle est identifiée par une altération progressive de la mémoire, du jugement, de la prise de décision et de l'utilisation du langage. Fait intéressant, la perte synaptique ne présente aucune relation au stade Braak ou au génotype apoE.

Par conséquent, la promotion de la plasticité hippocampique est un domaine de recherche important, car elle peut contribuer à la préservation de la mémoire dans des cerveaux sains et à l'amélioration des fonctions cognitives chez les personnes atteintes de maladie d'Alzheimer et de déficience cognitive légère.

enter image description here Les culturistes utilisent régulièrement le β-hydroxy β-méthylbutyrate (HMB) ou le produit voisin, l'acide β-hydroxy β-méthylbutyrique (HMB-FA) comme supplément de renforcement musculaire pour augmenter les gains de taille et de force musculaire induits par l'exercice et améliorer les performances physiques.

Le HMB est un complément très sûr, et même après une utilisation à long terme, il ne présente aucun effet secondaire. Certains produits de marque contenant du HMB (certaines formulations d'Ensure et de Juven) sont des aliments médicaux destinés à être utilisés pour fournir un soutien nutritionnel sous la surveillance d'un médecin chez les personnes souffrant d'atrophie musculaire due au VIH/SIDA ou au cancer, afin de favoriser la cicatrisation des plaies après une intervention chirurgicale ou une blessure.

Le HMB semble être doté d'une propriété unique de stimulation de la plasticité hippocampique. Cela a déjà été étudié. Cependant bien que le HMB soit largement utilisé par les athlètes et les culturistes comme aide ergogénique, on ne savait rien de son récepteur.

Bien que le foie soit riche en récepteur α activé par les proliférateurs de peroxysomes (PPARα), un récepteur hormonal nucléaire connu pour participer au métabolisme des acides gras, des scientifiques ont observé la présence de PPARα dans l'hippocampe. L'hippocampe est impliqué dans l'apprentissage spatial et la mémoire via l'activation de la protéine de liaison à l'élément de réponse à l'AMPc (CREB). Les scientifiques ont constaté que le HMB interagissait avec le domaine de liaison au ligand de PPARα pour activer PPARα et promouvoir les fonctions de l'hippocampe.

CREB est un facteur de transcription cellulaire. Il se lie à certaines séquences d'ADN appelées éléments de réponse à l'AMPc (CRE), augmentant ou diminuant ainsi la transcription des gènes. Les gènes dont la transcription est régulée par CREB comprennent : c-fos, BDNF, tyrosine hydroxylase, de nombreux neuropeptides (tels que la somatostatine, l'enképhaline, le VGF, l'hormone de libération de la corticotropine) et des gènes impliqués dans l'horloge circadienne des mammifères (PER1, PER2 ).

Le CREB a un rôle bien documenté dans la plasticité neuronale et la formation de la mémoire à long terme dans le cerveau et il a été démontré qu'il fait partie intégrante de la formation de la mémoire spatiale. La régulation négative de CREB est impliquée dans la pathologie de la maladie d'Alzheimer et l'augmentation de l'expression de CREB est considérée comme une cible thérapeutique possible pour la maladie d'Alzheimer.

Le HMB, un complément de musculation couramment utilisé chez l'homme, se lie au LBD du PPARα pour stimuler le CREB et favoriser la plasticité hippocampique via le PPARα.

Cela pourrait expliquer pourquoi l'administration orale de HMB améliore la mémoire et l'apprentissage chez les souris maladie d'Alzheimer familiales 5X (5XFAD), mais pas chez les souris 5XFAD dépourvues de PPARα (5XFADΔPPARα).

De plus, le traitement au HMB a réduit la charge de plaque chez les souris 5XFAD, mais pas chez les souris 5XFADΔPPARα. Ces résultats suggèrent que le HMB pourrait être bénéfique pour les patients atteints de maladie d'Alzheimer via la neuroprotection médiée par PPARα.

A new publication by scientists from Saudi Arabia and Egypt discusses the potential therapeutic effects of Abelmoschus esculentus (okra) seed extract on Alzheimer's disease (AD). enter image description here The study investigates the free radical scavenging and cholinesterase inhibitory activities of the extract, followed by in vivo studies to assess its anti-Alzheimer potential.

Indeed acetylcholinesterase inhibitors, are intended for those with mild to severe Alzheimer's. An extract of Ginkgo biloba known as EGb 761 has been used for treating Alzheimer's and other neuropsychiatric disorders.

In addition, diabetes is highly linked to the occurrence of Alzheimer's disease. In other studies, subfractions of abelmoschus esculentus have been shown to attenuate Aβ-induced insulin resistance and ameliorate the expression of p-tau and normalize the autophagy and survival of hippocampal neurons.

The results demonstrate that the okra seed extract has considerable scavenging potential for free radicals and exhibits inhibitory activity against acetylcholinesterase (AChE). In behavioral tests conducted on rats with AD, the extract improves cognitive functions and behavioral attitude compared to the AD-induced group. It also enhances neurotransmitter levels and decreases acetylcholinesterase activity in AD-induced rats.

The study finds that AD rats have increased acetylcholinesterase activity, altered levels of neurotransmitters, decreased brain-derived neurotrophic factor (BDNF), elevated levels of advanced glycation end products (AGEs), and increased interleukin-6 (IL-6). Treatment with okra seed extract improves BDNF, reduces AGEs and IL-6 levels, and restores antioxidant markers.

Histopathological examination shows Alzheimer's disease rats exhibit neuronal degeneration, neurofibrillary tangles, and other neuropathic alterations. Treatment with okra seed extract mitigates these pathological changes.

Overall, the study suggests that okra seed extract has potential therapeutic effects against Alzheimer's disease by exerting antioxidant, anti-inflammatory, and neuroprotective effects, improving cognitive functions, and modulating neurotransmitter levels.

It's unlikely that a plant remedy would cure Alzheimer's. Most of the time, academic studies do not lead to commercial drugs. In addition, mouse studies usually do not translate into clinical results, but who knows, maybe this time it will be different.

The article that we discuss today, is about the progression of Alzheimer's disease and a new way to detect this disease early. It points out that amyloid-beta peptides (Aβ) and tau proteins are useful clinical biomarkers for the diagnosis and monitoring of Alzheimer's disease. Testing the presence of these peptides can currently be done by liquid biopsy, which involves analyzing circulating biomarkers in bodily fluids, as a potential diagnostic and monitoring tool for Alzheimer's disease.

Yet there is the need to purify biomarkers of Alzheimer's disease, because of their low concentrations in blood plasma. Various isolation methods have been used, but they suffer from limitations such as long processing times, low yields, and poor reproducibility. Moreover, existing biosensors for detecting biomarkers of Alzheimer's disease are unimodal and measure only one detection parameter, which limits their versatility and accuracy. enter image description here The authors of this article propose the use of acoustofluidics, which combines acoustics and microfluidics, as a multimodal platform to isolate and detect biomarkers of Alzheimer's disease. Their platform includes an acoustofluidic separation chip to isolate biomarkers and a multimodal biosensor that combines surface-enhanced Raman scattering (SERS) and electrochemical immunosensors. This platform aims to improve the diagnostic accuracy and reliability of the detection of Alzheimer's disease biomarkers.

Acoustofluidics is a technology that combines acoustics and fluid mechanics to manipulate and separate particles or cells using acoustic waves in a microfluidic system. In this case, it is used for molecule separation and involves the use of interdigital transducers (IDTs) which are powered using a function generator and an RF amplifier.

Other technologies used include thermoelectric cooling, microfluidics, microscopy, nanoparticle tracking analysis, microfabrication techniques, surface-enhanced Raman spectroscopy, Raman spectrophotometry, and electrochemical measurements.

Surface Enhanced Raman Spectroscopy (SERS) is a technique used for the highly sensitive detection and analysis of molecules.

Overall, the authors present their acoustofluidic multimodal biosensor as a promising tool for the early diagnosis of Alzheimer's disease with a potential for clinical translation. However, the scientists only examined plasma samples from only 10 patients with Alzheimer's disease and 7 healthy controls of similar ages and physiological conditions. There is no information about the provenance of these samples. This largely dampens the excitement of the narration. In fact, statistically, no conclusion can be drawn from such a small sample. Moreover, the proposed test is extremely complex.

In fact, the ideal would be a simple blood test like the Galleri test from GRAIL Bio UK Ltd, which is able to detect multiple cancers from a single blood test. Indeed for a general practitioner who does not have recent training in neurology, it is not immediately obvious when he has the patient in front of him, which test would be necessary to make him pass to know if his symptoms are indeed those of Alzheimer's disease. With a simple blood test, GPs could decide what to do next without fear of ordering an unnecessary test.

Ménopause et maladie d'Alzheimer

- Posted by admin in Français

Les femmes ménopausées représentent environ 70 % de toutes les personnes atteintes de la maladie d'Alzheimer. Elles montrent des niveaux élevés de tau chez les femmes ménopausées sans troubles cognitifs par rapport aux hommes du même âge, en particulier dans le cadre d'un taux élevé de β-amyloïde (Aβ). Certaines études antérieures ont fait allusion à une cause hormonale, et de nouvelles données renforcent cette théorie. enter image description here

La transition périménopausique est une transition d'un déclin du métabolisme du glucose dans le cerveau à l'activation du métabolisme d'un carburant auxiliaire, les lipides. La consommation de lipides comme carburant auxiliaire peut être associée à une diminution (catabolisme) du volume de matière blanche.

Dans le JAMA Neurology, des chercheurs dirigés par Rachel Buckley au Massachusetts General Hospital de Boston rapportent que les femmes dont la ménopause a commencé avant l'âge de 46 ans, qui ont commencé un traitement hormonal substitutif plusieurs années après la ménopause, ont tendance à avoir plus de dépôts amyloïdes que leur consoeurs ayant vécu une ménopause plus classique. Cela confirme des études antérieures montrant que si l'hormonothérapie initiée au moment de la ménopause réduit le risque de développer la maladie d'Alzheimer, au contraire quand l'hormonothérapie est administrée après l'arrêt des symptômes de la ménopause, elle n'apporte aucun bénéfice.

Cette étude transversale incluait des hommes et des femmes sans troubles cognitifs inscrits au Registre du Wisconsin pour la prévention de la maladie d'Alzheimer. Les données ont été recueillies entre novembre 2006 et mai 2021. La population considérée comprenait des femmes avec ménopause à moins de 40 ans, d'autres avec une ménopause à 40-45 ans et enfin des femmes avec une arrivée de la ménopause à un âge classique (à plus de 45 ans). Les femmes comprenaient des utilisatrices d'hormonothérapie (actuelle ou antérieure) et d'autres non utilisatrice d'hormonothérapie. enter image description here

Sur 292 personnes sans troubles cognitifs, il y avait 193 femmes et 99 hommes. Il y avait 98 femmes utilisatrices d'hormonothérapie, et l'utilisation de l'hormonothérapie était associés à une détection de protéines tau plus élevée chez les personnes ayant une Aβ élevée par rapport aux personnes de sexe masculin. Chez les femmes auxquelles une hormonothérapie tardivea été administrée (plus de 5 ans après l'âge de la ménopause) il a été détecté une présence de protéines tau plus élevée par rapport aux femmes ayant subit une hormonothérapie précoce. Le faible nombre de participants dans chacune des catégories fait cependant craindre que les résultst ne soient pas significatifs statistiquement.

Dementia, infections and vaccines: 30 years of controversy

- Posted by admin in English

Currently, there are few modifying treatments for Alzheimer's disease, approved drugs such as Aducanumab, Donanemab, and other antibodies target protein plaques and appear to have limited benefits at the cost of significant side effects. enter image description here The European Interdisciplinary Council on Aging hosted a 2-day virtual meeting on November 24-25, 2022, to review the state of knowledge on the link between infection and neurological disorders, and dementia. We describe in this post an article which is itself the summary of the proceedings of this meeting. Our intention is educational, and the thesis is interesting but the article is often confusing. This is not a straightforward summary, we modified many statements into conditional mode.

The thesis of the article is that of an infectious etiology for dementia and in particular Alzheimer's disease. Infiltration of the brain by pathogens could act as a trigger or a cofactor of Alzheimer's disease. This thesis has been postulated several times over the past 30 years. This was also described about Parkinson's disease by Heiko Braak in 2003.

The first efforts to identify a causal link between neurodegenerative disorders and infection began in the early 1980s, but already Alois Alzheimer and very shortly after, Oskar Fischer evoked the possibility of an infectious origin for this type of dementia.

The microbial hypothesis of Alzheimer's disease postulates that the physiological disturbances associated with aging allow the infection of a healthy brain by viruses, bacteria, or other pathogenic agents (fungi, parasites). These pathogens would lead to increased production of amyloid-β (Aβ) and the aggregation of hyperphosphorylated tau protein, which would lead to neurodegeneration.

Following infection, these viruses can enter a latent phase and potentially reactivate decades later if the immune system weakens.

Genes, neuroinflammation, and dementia

The term “dementia” refers to a complex syndrome that results from a lifetime interaction of genetic, lifestyle, environmental, and age-related factors. Alzheimer's disease is the most common cause of dementia, but several other diseases can also cause dementia.

Heritability shows great variability in the different forms of dementia, ranging from 5-50%, with some having a very low degree of heritability, while others, such as frontotemporal dementia (FTD), have high heritability.

In addition, chronic low-grade inflammatory mechanisms have been implicated in a variety of neurodegenerative conditions including Alzheimer's disease.

A poorly studied aspect of neuroinflammation is the gender effect. Autoimmune diseases are more common in females (which account for up to 80% of cases), and females generally have increased immunoreactivity compared to males.

In most cases of physiological apoptotic cell death, efferocytosis prevents inflammation and other pathological conditions. However, when apoptotic cells are not effectively eliminated, destruction of apoptotic cell membrane integrity, leakage of intracellular contents, and secondary necrosis may ensue.

However, clinical trials that have investigated compounds with anti-inflammatory properties to modulate neuro-inflammatory processes in dementia have been unsuccessful.

The Antimicrobial Hypothesis of Alzheimer's Disease

Alzheimer's disease was first recognized based on the accumulation of neurofibrillary tangles and beta-amyloid protein deposits in the brain, and these features became the pathological hallmarks of dementia. This gave rise to what is commonly known as the amyloid cascade hypothesis of Alzheimer's disease, and at the heart of this theory is the beta-amyloid protein, which has receptors on many cell types. and can stimulate receptors to enter cells signaling pro-inflammatory transcription, moving toward microglia activation and neuron destruction. This theory focused primarily on the beta-amyloid protein as the primary culprit in Alzheimer's disease. However, as noted above, it has become apparent in recent years that neuroinflammation is also a very important contributing factor, with growing knowledge of an association between the immune system and Alzheimer's disease.

However, a key issue that has undermined the validity of this paradigm is the failure of many clinical trials targeting beta-amyloid protein. Although drugs targeting amyloid can reduce amyloid protein load, there has been no clinically significant effect on the disease. Even if several antibodies have recently been approved by regulatory authorities, this has been done in a very controversial way.

Moreover, new evidence suggests that beta-amyloid also has many biological roles, and these functions are neuroprotective at low levels but pathological at high levels. Other arguments that contradict the amyloid cascade hypothesis are that beta-amyloid is found in high concentrations in many older people who do not have dementia, while many demented patients do not have dementia. beta-amyloid.

There is a very early involvement of the innate immune system in Alzheimer's disease, which is a systemic disease with complex interactions between the periphery and the brain. The common pathway is neuroinflammation, and infection is a trigger that, over decades, will initiate and sustain pathways that ultimately result in the disease known as Alzheimer's disease, manifesting as cognitive decline. However, it might be better to no longer call this clinical manifestation Alzheimer's disease, but rather a chronic cerebral insufficiency, potentially of multiple origins, all leading to neurodegeneration.

Clinical relevance of the gut-brain axis in dementia

The intestinal microbiome is a community of microorganisms, mainly bacteria but also viruses and fungi, living in symbiosis with the host in the intestines, with increasing loads from the duodenum to the distal part of the colon. Modern sequencing techniques make it possible to measure the biodiversity and abundance of bacterial taxa within a fecal sample and assess the variability within a given population.

In healthy adults, the gut microbiota comprises about 10 phyla, with most species belonging to 2 phyla (Bacteroidetes and Firmicutes). Some taxa are strongly represented (e.g. Bacteroides, Prevotella, Alistipes, Eubacterium), while there are a large number of minor players poorly represented but with relevant metabolic activity, such as those that can produce chain fatty acids short (SCFA) (for example, Faecalibacterium, Butyrivibrio, Succinivibrio, Ruminococcus).

From childhood, the intestinal microbiota is shaped towards a state that is reached around the age of 10 years. In healthy adults, the intestinal microbiota is characterized by a certain resilience to transient disturbances. The large variability observed in adults depends on environmental factors, e.g. diet, location, drug use, exercise, and disease, all of which can shape the structure and composition of the gut microbiota and affect interindividual variability.

During aging, the gut microbiota faces significant compositional changes, including a reduction in biodiversity. In addition, the aging microbiota is less stable over time and less resistant to stress factors such as courses of antibiotic therapy.

It is therefore possible that the structure of the intestinal microbiota is involved in aging. The intestinal microbiota could therefore influence the pathophysiology of dementia. Indeed, it is known that the intestinal microbiota can establish a connection with several organs outside the gastrointestinal system, in particular, the brain via the vagal nerve.

  • The vagus nerve regulates gastrointestinal function and motility and, indirectly, the composition of the gut microbiota. The vagus nerve in the intestinal mucosa also has afferent vagal endings that express receptors sensing microbial metabolites and toxins.

  • Dysbiosis of the intestinal microbiota leads to the production of cytokines and the activation of intestinal immune cells.

  • Dysbiosis of the intestinal microbiota induces alterations in the permeability of the intestinal mucosa, allowing the entry into the systemic circulation of not only bacterial toxins like LPS, but also living microbes themselves, which can activate immune cells in circulation, promoting a systemic inflammatory response, which can affect microglia, leading to microglial activation and beta-amyloid deposition. Indeed, studies in mouse models have highlighted a complex interplay between the leaky gut and the leaky blood-brain barrier, particularly at the choroid plexus. In an animal model, closure of the choroid plexus barrier has been shown to be associated with mental deficits.

Many bacteria in the gut microbiota can produce short-chain fatty acids (SCFAs), which are important physiological mediators for the host. SCFAs can improve insulin sensitivity, stimulate adipose tissue catabolism, and modulate inflammation in the host. However, despite these primarily protective functions, once dementia is established, SCFAs may contribute to increasing rather than inhibiting amyloid deposition.

A Japanese study by Ueda et al. shown that depletion of the SCFA producer Faecalibacterium prausnitzii was a hallmark important for people with Alzheimer's disease. The authors isolated the strains markedly depleted in people with Alzheimer's disease and MCI compared to healthy subjects, and administered these strains as oral probiotics to Alzheimer's disease model mice, and showed that it resulted in improved cognitive testing!

Specific pathogens and neurological disorders * Complications related to SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters lung cells via spike proteins, which confer the ability to enter cells via the ACE2 receptor, allowing virus activation and migration into the system. The virus can then spread to other organs. SARS-CoV-2 promotes the aggregation of misfolded proteins in neurons and the brain through various direct and indirect actions. mechanisms, leading to neurodegeneration and cognitive dysfunction. The impact of the virus on lung function and hypoxia promotes neurodegeneration and cognitive decline.

  • HIV-associated neurocognitive disorders Neurocognitive disorders seen in HIV carriers are called HIV-associated neurocognitive disorders (HAND). The diagnosis is made mainly by exclusion. HIV reaches the cerebrospinal fluid and the brain as early as the sixth day after infection. It should be noted, however, that HIV cannot affect neurons, as neurons lack CD4 and CCR5 receptors, but it can infect microglia, astrocytes (at least partially), and oligodendrocytes. This generates long-term low-grade inflammation, producing neurotoxic products which then can damage neurons because the role of the cell types that make up glia is to support neurons.

A challenge in HIV drug therapy is to achieve a balance between neurological efficacy and neurotoxicity.

Herpes simplex virus type 1 (HSV-1)

After primary infection, herpes viruses can remain latent in the body and can be reactivated later by stress, immunosuppression, or inflammation. Reactivation of the virus, referred to as productive infection, causes direct viral damage and inflammation, and recurrent events over time likely cause cumulative damage. With the advent of polymerase chain reaction (PCR) techniques in the 1980s, the first demonstration that HSV-1 DNA could be detected in the brains of patients with Alzheimer's disease was provided.

It is now established that the association of HSV1 DNA in the brain and the type 4 allele of the apolipoprotein E gene (APOEe4, a known susceptibility factor for Alzheimer's disease) confers a high risk of Alzheimer's disease. HSV-1 infection produces abnormally phosphorylated beta-amyloid and tau protein.

Flu and dementia enter image description here Another pathogen that has been shown to be able to enter the CNS is the influenza virus. Influenza is sometimes associated with neuropsychiatric disorders, including confusion, delirium, seizures, and encephalopathy. However, the literature on the risk of dementia after influenza is generally negative.

Influenza vaccination was, however, associated with a reduced risk of Alzheimer's disease, suggesting that influenza vaccination could be a simple and inexpensive intervention to prevent dementia.

Conclusion

Over the past few decades, remarkable progress has been made in our understanding of the role of microorganisms in neuroinflammation and dementia. However, the encouraging preclinical results have not translated into such compelling results in human clinical studies. A major problem is that clinical trials last a few months when it can take years, even decades, between primary infection and the subsequent onset of cognitive decline. A particularly attractive preventive option is the wider use of vaccines to prevent infection, thereby mitigating the possible harmful effects of infection on the brain, with the potential for cognitive decline.

Chronic stress is a major risk factor for depression and can also disrupt the gut microbiome. For example, certain intestinal bacterial strains have the ability to induce anxious behaviors. Truncal vagotomy is associated with a decreased risk of later Parkinson's disease, but the effect of vagotomy on dementia is unclear.

Scientists from France wanted to test the hypothesis that the vagus nerve, a key two-way communication pathway between the gut and the brain, might mediate the effects of stress-induced gut microbiome changes on hippocampal plasticity and behavior.

For this, they used fecal samples from mice that underwent unpredictable chronic mild stress to inoculate healthy mice and assess the effects of gut microbiome changes on brain function and behavior. enter image description here To be able to test how the vagal nerve can influence brain function, they performed a subdiaphragmatic vagotomy on these mice before performing the gut microbiome transfer. Mice underwent vagotomy 2 weeks prior to inoculation with gut microbiota from control mice. Fecal samples were collected 7 weeks after inoculation.

The mice thus treated adopted the behavioral phenotype of donor-stressed mice, which is characterized by depression-like responses. these results indicate that the inoculation in healthy mice of a disturbed gut microbiota results in neuronal activation, associated with a decrease in the expression of key enzymes involved in the biosynthesis of serotonin and dopamine, and a decrease in neurogenic factors which quickly has an impact on neuronal generation.

To assess whether the vagus nerve transduces these changes in the gut microbiota that are induced by stress, the scientists used additional cohorts of animals that underwent subdiaphragmatic vagotomy or sham surgery 2 weeks before fecal transplantation.

The mice were anesthetized and their stomach and lower esophagus were gently exposed after a mid-lateral incision of the skin and abdominal wall, and the intestine was retracted to allow access to the stomach. A ligature was placed around the esophagus as it enters the stomach to allow gentle retraction and clearly expose both vagal trunks. These were dissected and all of the neural and connective tissue surrounding the esophagus below the diaphragm was removed to transect all small vagal branches. A 2 week recovery period was allowed before the behavioral experiments took place.

They found that vagus nerve ablation suppressed gut microbiota-mediated transmission of depressive-like states. Specifically, unlike sham-operated mice, vagotomized mice did not exhibit a decrease in preference for sucrose (fructose). In addition, inoculation of gut microbiota in animals that had undergone surgery but not ablation significantly increased latency to eat and their immobility, whereas these depressive-like responses were absent in vagotomized animals.

In addition, vagotomization of mice protected against the decrease in cell proliferation and neuronal differentiation induced by inoculation with gut microbiota harvested by UCMS. These results indicate that vagus nerve integrity is necessary for the transmission of the depression-like phenotype and deficits in adult HPC neurogenesis after inoculation with a disrupted gut microbiota.

Thus, inoculation of healthy mice with gut microbiome derived from unpredictable chronic mild stress mice, would well activate the vagus nerve and induce early and sustained changes in serotonin and dopamine neurotransmission pathways in the brainstem and seahorse.

It is well known that the vagus nerve acts as a conduit carrying signals from the gut to the brain and vice versa. The present study demonstrates that chronic stress-induced gut microbiome disruptions induce rapid deficits in serotonin and dopamine neurotransmission in the brainstem and hippocampus, early and late neuroinflammation, and alterations in adult hippocampal neurogenesis. which are ultimately associated with depressive states. The mediator of these alterations would be the vagal nerve which would act as an intermediary between the intestine organ and the brain.

This suggests that vagal afferents are potential targets for therapeutic intervention for stress-related disorders, including depression.

The brainstem and the hippocampus are two structures buried deep inside the skull. The hippocampus is one of the first structures affected in Alzheimer's disease, which explains the memory problems and disorientation that characterize the appearance of this neurodegenerative pathology. Hypoxia (oxygen deprivation), encephalitis, and temporal lobe epilepsies are also conditions presenting damage to the hippocampus. People with severe damage to the hippocampus are susceptible to different types of amnesia.

It is in the brainstem that the substantia nigra is found, which is implicated in Parkinson's disease. This area is involved in particular in motor skills, and in particular in the control of posture. But it also participates in non-motor functions (cognition, emotions, etc.). It has been associated with several diseases:

  • Parkinson's disease;
  • Gilles de la Tourette's disease;
  • Huntington's disease;
  • Wilson's disease;
  • myoclonic dystonia.
  • In addition, it would play a role in psychoses, such as schizophrenia

The scientists, therefore, concluded that subdiaphragmatic vagotomy abrogates adult hippocampal neurogenesis deficits, neuroinflammation, and depression-like behavior, suggesting that vagal afferent pathways are required to drive gut microbiome-mediated effects on the brain.

These results are consistent with previous findings showing that the vagus nerve mediates the effects of certain probiotic strains on stress responses in rodents and on neurotransmission and neuroplasticity. However, this study does not identify specific bacterial strains that could impact the brain via a vagus-hippocampal nerve circuit.

On the other hand, the use of subdiaphragmatic vagotomy as a means of abolishing vagus nerve activity is a quick and inexpensive but not necessarily conclusive procedure. Indeed, if the vagus nerve has a profound influence on the health of the brain, removing it makes it difficult to interpret the results.

Finally, it should be emphasized that not all microbial signals to the brain are mediated by the vagus nerve. For example, anxiety-like behavior in mice induced by mild gastrointestinal infection is still evident after vagotomy, indicating that other biological pathways (some of which are known to be influenced by the microbiota) may mediate the anxiogenic effects of the intestine. microbiota, such as microbial metabolites or by-products and immune mechanisms.

Manipulating the gut microbiome-vagus nerve-brain pathway by activating the vagus nerve or altering the gut microbiota would therefore be an opportunity in the quest to develop alternative therapies for treatment-resistant depression. Dosage trials of vagus nerve stimulation are ongoing in treatment-resistant depression, and the results of these studies in conjunction with clinicians' cumulative experience will determine future treatment choices.

In addition to representing a new therapeutic modality, vagus nerve stimulation therapy is a research tool that offers hope for a better understanding of the mechanisms underlying depression.

Les théories qui affirment que le vieillissement n’est pas programmé dans notre organisme, ne fournissent pas de réponse convaincante à différentes observations. Par exemple comment se fait-il que la durée de vie soit relativement constante au sein d’une espèce donnée et que différentes espèces puissent avoir une différence de jusqu’à 1000 fois dans leur durée de vie? La seule possibilité c’est que cette « horloge » soit codée dans le génome. enter image description here Des chercheurs Ecossais argumentent dans une nouvelle publication qu’il y a une horloge biologique, qu’elle est logée dans le cerveau, qu’elle influence grandement le système immunitaire. Ils illustrent cela avec la cas de la maladie d’Alzheimer.

Cette horloge, qu’ils nomment horloge circavitale, orchestrerait les changements liés à l’age via le renouvellement des cellules souches des systèmes physiologiques du corps.

La perte de cheveux, les effets indésirables gastro-intestinaux et rénaux sont couramment rencontrés chez les patients recevant une chimiothérapie qui inhibe la production de nouvelles cellules souches, et des troubles cognitifs transitoires sont également signalés.

A contrario, lles expériences de parabiose montrent que le vieillissement peut être manipulé via la circulation sanguine.

Cela pourrait impliquer que de façon similaire aux horloges biologiques circadiennes et circannuelles, il existerait une « horloge maîtresse de l'âge » (horloge circavitale) qui serait située dans le cerveau limbique des mammifères. Cette horloge modulerait les changements systémiques du facteur de croissance et de la sécrétion hormonale au cours de la vie, ainsi que les altérations systémiques. dans l'expression génique telle que la méthylation génomique.

L'ablation chirurgicale de l'hypothalamus chez les hamsters est associée à une durée de vie réduite, et son maintien en ordre de marche à l'aide de tissu hypothalamique fœtal augmente la durée de vie de plus de 4 mois, ceci est remarquable pour une espèce dont la durée de vie est comprise entre 11 et 18 mois. Les lésions cérébrales sont une cause connue d'immunodéficience.

Les études sur le vieillissement accéléré chez la souris, ainsi que sur les gènes de longévité humaine, convergent vers les facteurs de croissance des fibroblastes (FGF) conservés au cours de l'évolution et leurs récepteurs, y compris KLOTHO, ainsi que les facteurs de croissance analogues à l'insuline (IGF) et les hormones stéroïdes, en tant qu'acteurs clés de la médiation les effets systémiques du vieillissement.

Les cellules fibroblaste ont plusieurs rôles dans l'organisme, dont :

• un rôle protecteur contre la constitution d'athéromes, via la métabolisation du cholestérol ; • le renouvellement du collagène et des protéines des fibres grâce à leur fabrication et aussi leur destruction assurées par des métalloprotéases (collagénases et protéases) ; • la défense anti-infectieuse et antivirale par la sécrétion de facteurs chimiotactiques (MCP, MIP) et d'interféron β.

La protéine Klotho, elle, a un rôle important dans la lutte contre le processus de vieillissement. Une étude a montré qu'un défaut d'expression du gène chez la souris entraînait un syndrome ressemblant au vieillissement humain : durée de vie réduite, infertilité, artériosclérose, atrophie cutanée, ostéoporose et emphysème. Une étude publiée en 2005 a trouvé que la surexpression de Klotho était à l'inverse associée à une augmentation de leur durée de vie.

On suppose que les changements liés à l'âge de ces facteurs et de plusieurs autres facteurs entraînent un déclin progressif de l'entretien des tissus biologiques en raison de l'échec de la reconstitution des cellules souches.

Cela affecterait plus particulièrement le système immunitaire, qui nécessite un renouvellement constant des cellules souches de la moelle osseuse. Le déclin immunitaire lié à l'âge augmenterait donc le risque d'infection alors que la durée de vie peut être prolongée chez les animaux dans des environnements sans germes.

Cet élément et d'autres suggèrent que l'infection est la principale cause de décès chez les organismes supérieurs. Le déclin immunitaire est également associé aux maladies liées à l'âge. C’est la thèse de Richard Lathe et David St Clair , qui argumentent que la maladie d'Alzheimer est causée par l'immunosénescence et l'infection.

En effet, la protéine signature du cerveau la maladie d'Alzheimer, Aβ, est maintenant connue pour être un peptide antimicrobien, et les dépôts d'Aβ dans le cerveau la maladie d'Alzheimer peuvent être une réponse à une infection plutôt qu'une cause de maladie.

L'idée que la la maladie d'Alzheimer pourrait être associée à une infection a une longue histoire. Fischer a ainsi écrit "J'ai souligné la similitude particulière des Drusen {dépôts amyloïdes} avec les colonies bactériennes". Néanmoins, pendant longtemps, les spécialistes de la maladie d'Alzheimer ont été d'avis que les dépôts d'Aβ observés dans le cerveau des patients atteints de la maladie d'Alzheimer étaient la cause de cette maladie.

Pourtant des éléments solides indiquent que le peptide Aβ doit être l'une des composantes du système immunitaire inné. Ce peptide possède en effet une activité d'inactivation robuste contre différentes bactéries, levures et virus.

Ce pourrait-il que le cerveau (comme tous les autres tissus examinés) abrite son propre microbiome, et que celui-ci augmenterait avec l'âge ? C’est assez probable. Dans ce cas, ces infections à répétion au cours de la vie pourraient influencer cette horloge circavitale, et petit à petit la dérégler.

Étant donné que certaines personnes âgées cognitivement normales présentent une neuropathologie étendue, les auteurs affirment que la localisation précise de la pathologie dans le cerveau - en particulier, les lésions du cerveau limbique où se trouverait cette horloge circavitale - détermine le degré d'immunosénescence et pourraient donc sous-tendre un cercle vicieux de déclin immunitaire accéléré et de prolifération microbienne qui culmine dans la maladie d'Alzheimer.

Ce modèle général pourrait être étendu à d'autres maladies liées à l'âge, et ils proposent un paradigme général de la sénescence de l'organisme dans lequel le déclin de la prolifération des cellules souches entraîne une immunosénescence et une mortalité programmées.

Mais il ne s'agit que d'une théorie parmi de multiples autres.


Please, help us continue to provide valuable information: