I increasingly believe that the consistently negative results of clinical trials in most degenerative diseases are not because these diseases are difficult to understand, but because most of the scientists who contribute to them are molecular biologists and not doctors or system biology engineers.

enter image description here

*Detail from "Triumph of St. Thomas Aquinas over Averroes" by Benozzo Gozzoli (1420–97)*

Molecular biologists do not care for anatomy of physiology, even worse, they treat the 200 different types of cells in the body as mostly similar. Even if most of neurodegenerative diseases involve anatomical structures that are found only in primates, their animal models are non-primate, and indeed they are astonished that good clinical results in mice do not translate in human beings.

They do not even agree if ALS starts in the brain or in muscles ("dying forward" hypothesis versus "dying backward" hypothesis). Astonishingly several times they "proved" that each of their favorite hypothesis was true and that indeed the competing hypothesis was false.

For ALS alone they implicated more than 120 genes, even if the notion of gene (as a single DNA region which is uniquely implicated in coding a specific strand of RNA) is extremely vague. And they did this before finding that, what was thought as a non coding region (C9orf72) was implicated in ~50% of familial ALS cases. Now C9orf72 is called a gene, so everything is safe again.

Like medieval scholars who discussed how many angels could stand on the tip of a pin, they proposed thousands of small molecules as the causal mechanism for Alzheimer's, Parkinson's, or ALS. The profusion of proposals and the lack of discussion of competing proposals should surely question anyone with a rational mind?

And some authors have stated non-mainstream research proposals were blocked since decades.

This kind of scientist has lost credibility.

There are alternating views, notably by Heiko Braak who says that Parkinson and Alzheimer start with a pathogen invasion in guts and its subsequent progression into the brain. And he and his colleagues provided good evidence for that.

Braak is a medical doctor, but molecular biology scientists did not think much of his findings. Braak is cited only by 0.3% of articles on Parkinson disease.

For a better explanation of why trying to understand something by dissecting it in components and making experiments on isolated components does not help to comprehend how a system works, look at the famous article "Can a biologist fix a radio?"

So in my current view we call different neurodegenerative diseases with different names, but they are mostly the same disease. Whatever neurons are dying in the substantia nigra (Parkinson), primary motor cortex (ALS), or lobes (Alzheimer) it is mainly about neurons dying in the brain. And it is a problem that cannot be solved with molecular biology.

Un approvisionnement adéquat en sang est essentiel au fonctionnement normal du cerveau. D'un autre côté, les déficits du flux sanguin cérébral et le dysfonctionnement de la barrière hémato-encéphalique sont des signes précoces de troubles neurodégénératifs chez l'homme et les modèles animaux.

enter image description here

Un approvisionnement suffisant en sang des 86 milliards de neurones du cerveau humain, est obtenu grâce à un vaste réseau vasculaire bien régulé d'artères, d'artérioles, de capillaires, de veinules et de veines atteignant environ 600 km de longueur. L'activité neuronale déclenche une augmentation de l'approvisionnement régional en sang oxygéné en quelques millisecondes. C'est ce que l'on appelle la réponse hémodynamique ou le couplage reurovasculaire.

Deux nouvelles études décrivent les éléments de la physiologie neurovasculaire qui rendent cet exploit possible. L'un, publié dans Nature le 19 février 2020 et dirigé par Chenghua Gu à la Harvard Medical School, rapporte que les cellules endothéliales qui tapissent les artérioles arborent une myriade d'entrées, appelées cavéoles, qui contrôlent en quelque sorte la dilatation rapide des artérioles en réponse à la stimulation neuronale. L'autre, publié le 20 janvier dans Nature Communications et dirigé par Martin Lauritzen de l'Université de Copenhague, décrit des sphincters spécialisés qui contrôlent le flux sanguin des artérioles du cerveau vers ses vastes lits capillaires.

En plus de la maladie d'Alzheimer, le système vasculaire cérébral a été impliqué dans la pathogenèse de la démence frontotemporale, la maladie de Parkinson, la maladie de Huntington, la sclérose latérale amyotrophique (SLA), la sclérose en plaques et d'autres conditions neurodégénératives telles que le trouble neurocognitif induit par le VIH.

Les patients SLA développent également des déficits de perfusion dans le cortex fronto-pariétal.

Le modèle conventionnel postule que la réponse hémodynamique est médié par des facteurs vasodilatateurs dérivés des neurones qui détendent directement les cellules musculaires lisses artérielles. Pourtant, d'après des travaux récents, il semble que les cellules endothéliales cérébrales puissent également détecter l'activité neuronale. Peut-être alors que les signaux vasodilatateurs agissent d'abord sur les cellules endothéliales cérébrales avant d'être relayés aux cellules musculaires lisses artérielles.

Chow et al. explorent ce potentiel couplage neurovasculaire médiée par les cellules endothéliales cérébrales en adoptant une approche très élégante. Ils se sont concentré sur le cortex somatosensible de souris de laboratoire, où la stimulation des moustaches déclenche de manière fiable l'activité neurale, la dilatation des vaisseaux et le flux sanguin. Ils montrent que la détection classique d’oxyde nitrique dans les cellules musculaires lisses est insuffisante pour un couplage neurovasculaire complet.

enter image description here

Au lieu de cela, les cavéoles enrichies en cellules endothéliales cérébrales artériolaires sont également nécessaires pour un couplage efficace. À l'aide de divers modèles de souris spécifiques au type cellulaire et de gène global de knockout et de surexpression, ils confirment que les cavéoles dans les cellules endothéliales cérébrales – et non les cellules musculaires lisses artérielles - sont nécessaires pour le couplage neurovasculaire.

Ces découvertes inspirent des questions passionnantes pour comprendre la biologie du système vasculaire cérébral en matière de santé, de vieillissement et de maladie.

Quel est le mécanisme par lequel les cavéoles médient le couplage neurovasculaire? Quelles sont les molécules vasodilatatrices spécifiques? Existe-t-il des mécanismes pour engager préférentiellement les cavéoles cellules endothéliales cérébrales par rapport à la voie oxyde nitrique? Comment les changements documentés de l'expression des gènes cellules endothéliales cérébrales avec le vieillissement sont-ils liés au couplage neurovasculaire? Enfin, comment ce modèle évolue-t-il avec la maladie? Par exemple, l'accumulation vasculaire de β-amyloïde dans l'angiopathie amyloïde cérébrale a été corrélée à une perte de cellules musculaires lisses artérielles.

En bref, la présente étude donne un nouvel élan à l'étude de la complexité fascinante du système vasculaire cérébral et, espérons-le, ouvrira la voie à une meilleure compréhension de la façon dont cette structure dégénère avec l'âge et la maladie.

An adequate blood supply is essential for normal brain function. On the other hand, deficits in cerebral blood flow and dysfunction of the blood-brain barrier are early signs of neurodegenerative disorders in humans and animal models.

enter image description here

A sufficient supply of blood from the 86 billion neurons in the human brain is obtained through a large, well-regulated vascular network of arteries, arterioles, capillaries, venules and veins up to approximately 600 km (400 miles) in length. Neural activity triggers an increase in the regional supply of oxygenated blood within milliseconds. This is called either haemodynamic response or reurovascular coupling.

Two new studies describe the elements of neurovascular physiology that make this feat possible. One, published in Nature on February 19, 2020 and edited by Chenghua Gu at Harvard Medical School, reports that the endothelial cells lining the arterioles have a myriad of entries, called caveolae, which somehow control the rapid dilatation of the arterioles in response to neural stimulation. The other, published on January 20 in Nature Communications and directed by Martin Lauritzen of the University of Copenhagen, describes specialized sphincters that control blood flow from arterioles from the brain into its large capillary beds.

In addition to Alzheimer's disease, the cerebrovascular system has been implicated in the pathogenesis of frontotemporal dementia, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis and others neurodegenerative conditions such as HIV-induced neurocognitive disorder.

ALS patients also develop perfusion deficits in the fronto-parietal cortex.

The conventional model postulates that neurovascular coupling is mediated by vasodilator factors derived from neurons that directly relax the arterial smooth muscle cells. However, according to recent work, it seems that brain endothelial cells can also detect neuronal activity. Perhaps then the vasodilator signals first act on the brain endothelial cells before being relayed to the arterial smooth muscle cells.

Chow et al. explore this potential neurovascular coupling mediated by brain endothelial cells by adopting a very elegant approach. They focused on the somatosensory cortex of laboratory mice, where stimulation of the whiskers reliably triggers neural activity, dilated vessels and blood flow. They show that conventional detection of nitric oxide in smooth muscle cells is insufficient for complete neurovascular coupling.

enter image description here

Instead, the caveolae enriched with arteriolar cerebral endothelial cells are also necessary for efficient coupling. Using various cell-type specific mouse models and the overall knockout and overexpression gene, they confirm that the celloles in cerebral endothelial cells - not arterial smooth muscle cells - are necessary for neurovascular coupling.

These discoveries inspire fascinating questions to understand the biology of the cerebrovascular system in terms of health, aging and disease.

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

L'accumulation de fer associée au déséquilibre du système d'homéostasie cérébral du fer est une caractéristique pathologique de diverses maladies neurodégénératives. La résonance magnétique a fourni un outil utile pour identifier les maladies neurodégénératives sous-jacente à une concentration anormale du fer dans l'organisme.

enter image description here

FairPark II est un important projet de recherche financé par l'UE qui étudiera principalement les effets d'une thérapie par chélation du fer sur la progression du handicap dans la maladie de Parkinson. Le projet s'est déroulé de 2015 à 2020 et a réuni 15 partenaires dans un essai clinique multicentrique de la thérapie chez les patients atteints de la maladie de Parkinson. FAIR-ALS-II est un projet français similaire à FairPark II, mais pour la sclérose latérale amyotrophique.

Dans les trois principaux maladies neurodégénératives, la dégénérescence se produit dans les régions du système nerveux central (SNC) associées à la mémoire (maladie d'Alzheimer), à l'automaticité (maladie de Parkinson) et à la fonction motrice (sclérose latérale amyotrophique, sclérose latérale amyotrophique), qui nécessitent toutes une demande en oxygène pour exploiter les besoins importants en énergie de ces neurones.

Dans la maladie de Parkinson, une dégénérescence progressive de la substantia nigra pars compacta (SNc) est associée à l'apparition de foyers sidérotiques [21], en grande partie causée par une augmentation instable des niveaux de fer résultant d'un déséquilibre entre l'importation, le stockage et l'exportation de fer cellulaire. Au niveau moléculaire, l'α-synucléine régule le transport de la dopamine et du fer avec des mutations associées à la maladie de Parkinson dans cette protéine, provoquant une perturbation fonctionnelle de ces processus.

De même, dans la sclérose latérale amyotrophique, une accumulation précoce de fer est présente dans les neurones de la voie motrice cortico-spinale avant l'apparition de la maladie et avant l'accumulation secondaire de fer dans la microglie. Un taux élevé de ferritine dans le sérum est un indicateur de mauvais pronostic pour les malades de la sclérose latérale amyotrophique et l'application de séquences sensibles au fer en imagerie par résonance magnétique est devenue un outil utile pour identifier cette maladie.

Les voies moléculaires qui découlent d'un tel déséquilibre du système d'homéostasie restent encore à élucider, mais des percées importantes ont été réalisées ces dernières années. Loin d'être une simple cause ou conséquence, il a été récemment découvert que ces altérations peuvent déclencher une sensibilité à une voie de mort cellulaire dépendante du fer qui est appelée ferroptose. À son tour, cela a entrainé un intérêt pour certains modulateurs clés de cette voie de mort cellulaire qui pourraient être des cibles thérapeutiques pour les maladies neurodégénératives.

It est intéressant de remarquer que l'accumulation de fer et la ferroptose sont très sensibles à la chélation du fer. Cependant, bien que les chélateurs qui récupèrent le fer intracellulaire, protègent contre les dommages neuronaux oxydatifs dans les modèles mammifères et se sont révélés efficaces pour traiter la sidérose systémique, ces composés ne sont pas appropriés en raison du risque élevé de développer une déplétion en fer et une anémie. Au lieu de cela, une chélation modérée du fer offre une nouvelle stratégie thérapeutique pour la neuroprotection. Comme le démontre le défériprone, le fer peut être récupéré des complexes de fer instable dans le cerveau et transféré (de façon conservatrice) vers des accepteurs d'affinité plus élevée dans les cellules ou la transferrine extracellulaire. Des essais de preuve de concept précliniques et cliniques prometteurs ont conduit à plusieurs essais cliniques de grande envergure.

[21] "sidérotique" signifie: Lié au fer ou à l'acier, comme dans la sidérose (fibrose causée par des dépôts de fer)

Publicité


Ce livre retrace les principales réalisations de la recherche sur la SLA au cours des 30 dernières années. Il présente les médicaments en cours d’essai clinique ainsi que les recherches en cours sur les futurs traitements susceptibles d’ici quelques années, d’arrêter la maladie et de fournir un traitement complet en une décennie ou deux.

ALS has been linked by many scientists to an abnormal lipid metabolism and, in particular, to gangliosides and their ceramide-type precursors which are thought to be modulators of the progression of the disease. Interestingly, autoantibodies against specific gangliosides produce an inflammatory disease of the spinal motor neurons which is known as conduction multifocal motor neuropathy (Harschnitz et al., 2014).

Overall, there is substantial evidence of ganglioside dysfunction in neurodegenerative diseases, for example for ALS, Alzheimer's disease, Huntington's disease and Parkinson's disease.

enter image description here

The exact nature of the problems, however, appears to be variable in these different diseases; for example ganglioside concentrations are reduced in Parkinson's disease and Huntington's disease, but increased in Alzheimer's disease and there are two-way changes for ALS.

Glycan and polysaccharide are synonymous, however, in practice, the term glycan can also be used to refer to a glycoprotein, a glycolipid or a proteoglycan. Glycolipids are lipids with a carbohydrate linked by a glycosidic bond (covalent). Their role is to maintain the stability of the cell membrane and facilitate cell recognition, which is crucial for the immune response and in the connections that allow cells to connect to each other to form tissue.

Sphingolipidoses are a class of lipid storage disorders linked to the metabolism of sphingolipids (a glycolipid). Sphingolipids were discovered in brain extracts in the 1870s and were named after the mythological sphinx because of their enigmatic nature. These compounds play an important role in signal transduction and cell recognition. Sphingolipidosis, or disorders of sphingolipid metabolism, have a particular impact on neural tissue. The main diseases of these disorders are Niemann-Pick disease, Fabry disease, Krabbe disease, Gaucher disease, Tay-Sachs disease and metachromatic leukodystrophy.

There are simple sphingolipids, which include sphingoid bases and ceramides as well as complex sphingolipids.

Sceramides have been implicated in various medical conditions, including cancer, neurodegeneration, diabetes, microbial pathogenesis, obesity and inflammation. Ceramides induce insulin resistance in skeletal muscles, as well as induction of insulin resistance in many tissues. In the mitochondria, ceramide suppresses the electron transport chain and induces the production of reactive oxygen species.

Complex sphingolipids include Sphingomyelin which is found in the membranes of animal cells, particularly in the membranous myelin sheath which surrounds certain axons of nerve cells. They also include glycosphingolipids which can themselves be divided into cerebrosides, gangliosides and globosides.

Gangliosides have been shown to be very important molecules in immunology. Natural and semi-synthetic gangliosides are considered as possible therapies for neurodegenerative disorders. Gangliosides are present and concentrated on cell surfaces, where they present points of recognition for extracellular molecules or the surfaces of neighboring cells. They are mainly found in the nervous system.

A number of studies have implicated glycosyltransferases in the pathogenesis of neurodegenerative diseases, but it has been difficult to differentiate the cause of the effect. Scientists recently discovered [0] that mutations near the substrate binding site of the glycosyltransferase 8 domain containing 1 (GLT8D1) are associated with familial amyotrophic lateral sclerosis (ALS). The study authors demonstrated that mutations associated with ALS reduce the activity of the enzyme, suggesting a mechanism of loss of function that is an attractive therapeutic target. Their work shows that an isolated dysfunction of a glycosyltransferase is enough to cause degenerative diseases.

Several glycan-based therapies have been developed. In particular, glycosylation modulators that affect glycan uptake can be powerful tools for developing glycan-based therapies.

[0] Disrupted glycosylation of lipids and proteins isa cause of neurodegeneration. Tobias Moll, Pamela J. Shaw and Johnathan Cooper-Knock doi:10.1093/brain/awz358

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

La SLA a été liée par de nombreux scientifiques à un métabolisme lipidique anormal et, en particulier, aux gangliosides et leurs précurseurs de type céramide qui seraient des modulateurs de la progression de la maladie. Fait intéressant, les auto-anticorps contre des gangliosides spécifiques produisent une maladie inflammatoire des motoneurones spinaux qui est connue sous le nom de neuropathie motrice multifocale avec conduction (Harschnitz et al., 2014).

Dans l’ensemble, il existe des preuves substantielles de dysfonctionnement des gangliosides dans les maladies neurodégénératives, par exemple pour la SLA, la maladie d’Alzheimer, la maladie de Huntington et la maladie de Parkinson. enter image description here La nature exacte des problèmes apparaît cependant être variable dans ces différentes maladies; par exemple les concentrations de ganglioside sont réduites dans la maladie de Parkinson et la maladie de Huntington, mais augmentées dans la maladie d’Alzheimer et y a des altérations dans les deux directions pour la SLA.

Glycane et polysaccharide sont synonymes, cependant, dans la pratique, le terme glycane peut également être utilisé pour désigner une glycoprotéine, un glycolipide ou un protéoglycane. Les glycolipides sont des lipides avec un glucide lié par une liaison glycosidique (covalente). Leur rôle est de maintenir la stabilité de la membrane cellulaire et de faciliter la reconnaissance cellulaire, qui est cruciale pour la réponse immunitaire et dans les connexions qui permettent aux cellules de se connecter les unes aux autres pour former des tissus.

Les sphingolipidoses sont une classe de troubles du stockage des lipides liés au métabolisme des sphingolipides (un glycolipide). Les sphingolipides ont été découverts dans des extraits de cerveau dans les années 1870 et ont ainsi été nommés d’après le sphinx mythologique à cause de leur nature énigmatique. Ces composés jouent un rôle important dans la transduction du signal et la reconnaissance cellulaire. Les sphingolipidoses, ou troubles du métabolisme des sphingolipides, ont un impact particulier sur le tissu neural. Les principales maladies de ces troubles sont la maladie de Niemann-Pick, la maladie de Fabry, la maladie de Krabbe, la maladie de Gaucher, la maladie de Tay-Sachs et la leucodystrophie métachromatique.

Il existe des sphingolipides simples, qui comprennent les bases sphingoïdes et les céramides ainsi que les sphingolipides complexes.

Le scéramides ont été impliqués dans divers états pathologiques, notamment le cancer, la neurodégénérescence, le diabète, la pathogenèse microbienne, l’obésité et l’inflammation. Les céramides induisent une résistance à l’insuline des muscles squelettiques, ainsi qu’une induction de la résistance à l’insuline dans de nombreux tissus. Dans les mitochondries, le céramide supprime la chaîne de transport d’électrons et induit la production d’espèces réactives de l’oxygène.

Les sphingolipides complexes incluent la Sphingomyéline qui se trouve dans les membranes des cellules animales, en particulier dans la gaine de myéline membraneuse qui entoure certains axones des cellules nerveuses. Ils comprennent également les glycosphingolipides qui peuvent eux-même être divisés en cérébrosides, gangliosides et globosides.

Les gangliosides se sont révélés être des molécules très importantes en immunologie. Les gangliosides naturels et semi-synthétiques sont considérés comme des thérapies possibles pour les troubles neurodégénératifs. Les gangliosides sont présents et concentrés sur les surfaces cellulaires, où ils présentent des points de reconnaissance pour les molécules extracellulaires ou les surfaces des cellules voisines. Ils se trouvent principalement dans le système nerveux.

 Un certain nombre d’études ont impliqué des glycosyltransférases dans la pathogenèse des maladies neurodégénératives, mais il a été difficile de différencier la cause de l’effet. Des scientifiques ont récemment découvert [0] que des mutations à proximité du site de liaison du substrat du domaine de la glycosyltransférase 8 contenant 1 (GLT8D1) sont associées à la sclérose latérale amyotrophique familiale (SLA). Les auteurs de l’étude ont démontré que les mutations associées à la SLA réduisent l’activité de l’enzyme, suggérant un mécanisme de perte de fonction qui est une cible thérapeutique attrayante. Leur travail est montre qu’un dysfonctionnement isolé d’une glycosyltransférase est suffisant pour provoquer des maladies dégénératives.

Plusieurs thérapies à base de glycane ont été développées. En particulier, les modulateurs de glycosylation qui affectent la fixation des glycanes peuvent être de puissants outils pour développer des thérapies à base de glycane.

[0] Disrupted glycosylation of lipids and proteins isa cause of neurodegeneration. Tobias Moll, Pamela J. Shaw and Johnathan Cooper-Knock doi:10.1093/brain/awz358

Publicité


Ce livre retrace les principales réalisations de la recherche sur la SLA au cours des 30 dernières années. Il présente les médicaments en cours d’essai clinique ainsi que les recherches en cours sur les futurs traitements susceptibles d’ici quelques années, d’arrêter la maladie et de fournir un traitement complet en une décennie ou deux.

Specific regions of the brain are atrophied in neurodegenerative diseases, however, physiological differences from one patient to another make it difficult to predict the progression of neurodegeneration in a specific individual.

An important theory of the progression of neurodegenerative diseases is that misfolded pathological proteins move from one neuron to another via trans-synaptic propagation. Seeley and his colleagues, but also others like H Braak have previously proposed, based on this idea, that the disease begins in an area of ​​the brain, the epicenter, and spreads into new, functionally connected regions.

Most of the information in this regard came from cross-sectional data. It remained to be seen whether such a model predicted longitudinal atrophy in individual patients. In the present study, the authors sought to do just that in patients with frontal variant behavioral dementia (bvFTD) or the semantic variant of primary progressive aphasia (SVPPA), two forms of frontotemporal dementia with schemas distinct from atrophy. They hypothesized that, in a particular disorder, individual patients would have distinct epicenters that would dictate differences in the overall progression of the disease.

In general, epicondensons overlap in patients with the same syndrome. In patients with bvFTD, they most often resided in the anterior cingulate cortex and fronto-sinus cortex. In people with svPPA, the epicenter tended to be close to the anterior temporal lobe. Even in this case, the exact location of the epicenters still varied considerably from person to person. Interestingly, although these epicenters have always shown signs of atrophy, they were not necessarily the areas of greatest loss of volume. Within each disease, patterns of atrophy differed considerably from person to person.

Scientists led by Jesse Brown and Bill Seeley of the University of California, San Francisco, used a single structural MRI in 72 patients with frontotemporal dementia to predict which regions of their brain would succumb to the disease.

They were able to determine the probable origin of the disease - its epicenter - and used functional connectivity maps to extrapolate areas that may subsequently atrophy during disease progression. Their predictions seem indeed correlated with the loss of brain volume in the following years. the authors suggest that this method provides an individualized biomarker for clinical trials and also for early diagnosis. Brown and colleagues show that the key biology at play in neurodegenerative diseases involves the functional physiology of large-scale brain networks that support mental functioning. As in previous studies, the methods used in this study do not differentiate competing patterns of networked neurodegeneration.

To identify areas that could atrophy as the disease progressed, researchers developed a forecasting model that took into account three factors: the functional link of a region to the epicenter, the narrowing of its closest neighbors and the loss of reference volume. From there, the researchers determined the probable atrophy patterns of 42 volunteer patients of bvFTD and 30 patients with svPPA. These participants then performed an average of three additional separate analyzes of six to 14 months, and the researchers compared the expected results to the actual loss.

Two aspects of the study are particularly noteworthy. The first is the idea of ​​a model of personalized prediction of longitudinal atrophy of the brain, based on the hypothesis of trans-neuronal propagation. The second is the introduction of a concept called "nodal risk", which is a measure of the regional risk of future atrophy based on the degree of basic atrophy in highly functionally connected regions. Compared to previous group-level approaches, an individualized metric of the rate and directionality of impending brain atrophy has important potential ramifications for clinical practice and clinical trials. For example, because cerebral atrophy is closely related to the clinical progression of the disease, this method based on connectivity can be useful for the prognosis of various neurodegenerative diseases. In addition, the placebo and treatment groups could be carefully compared to the atrophy rates expected during clinical trials.

In addition, identifying a group of "fast progressors" may allow for more effective screening of drug candidates (ie, shorter duration and fewer people).

The researchers found that the rate of volume loss differed across brain regions. For the most part, these patterns of atrophy were quite similar, with a correlation coefficient of 0.65. For 16 patients, including 13 with bvFTD, the model did not predict volume loss, with an average correlation coefficient of -0.04. Most of these patients had limited initial atrophy and a confused epicenter. The strongest contraction occurred not in the epicentres themselves, but in their first-degree neighbors. Perhaps the epicenter had already degenerated as much as it would, while the first-degree neighbors were just beginning, the authors said. "This has fundamental implications for clinical trials that would use indexes derived from imaging as a result," wrote Bejanin. "The best areas for evaluating the effect of disease-modifying drugs should not be those that are primarily affected by the disease, nor the most atrophied, but those most connected to these areas."

The method requires important information about the emerging neurodegenerative pattern, which may hinder application in the early stages of the disease. It is not yet refined enough to be used in clinical trials. In this study, grouped data on the functional connectome of a group of healthy people were used to predict connectivity, but using a patient's own connectome would likely improve predictions. With greater accuracy, this model could provide a proof-of-principle indicator for early-to-intermediate-stage clinical trials. For example, if a therapy causes less atrophy than expected, it could encourage stakeholders to conduct a confirmatory test.

However, although it is highly correlated, atrophy is not equivalent to the underlying pathology. Thus, some of the direct effects of the pathology on cognition and / or behavior (i.e., mediated by atrophy) may not be captured.

a more distant goal is to predict enough atrophy to predict the symptoms that patients may expect in the future. This model may be useful in other neurodegenerative diseases, including Alzheimer's disease, although the dual proteininopathy of Aβ and Tau protein is likely to make the situation more complicated.

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

Des régions spécifiques du cerveau sont atrophiées dans les maladies neurodégénératives, cependant, les différences physiologiques d'un patient à l'autre rendent difficile la prédiction de la progression de le neurodégénération chez une personne spécifique.

Une théorie importante de la progression des maladies neurodégénératives soutient que les protéines pathologiques mal repliées passent d'un neurone à l'autre via la propagation trans-synaptique. Seeley et ses collègue, mais aussi d'autres come H Braak ont proposé précédemment, sur la base de cette idée, que la maladie débute dans une région du cerveau, l'épicentre, et se propage dans de nouvelles régions fonctionnellement connectées.

La plupart des informations à cet égard provenaient de données transversales. Il restait à prouver si un tel modèle prédisait une atrophie longitudinale chez des patients individuels. Dans la présente étude, les auteurs ont cherché à faire exactement cela chez les patients atteints de démence comportementale variante frontale (bvFTD) ou de la variante sémantique de l'aphasie progressive primaire (svPPA), deux formes de démence fronto-temporale avec des schémas distincts d'atrophie. Ils ont supposé que, dans un trouble particulier, des patients individuels auraient des épicentres distincts qui dicteraient des différences dans la progression globale de la maladie.

En général, les épicentres se chevauchent chez les patients atteints du même syndrome. Chez les patients atteints de bvFTD, ils résidaient le plus souvent dans le cortex cingulaire antérieur et le cortex fronto-sinusien. Chez les personnes atteintes de svPPA, l'épicentre avait tendance à être proche du lobe temporal antérieur. Même dans ce cas, l'emplacement exact des épicentres variait encore considérablement d'une personne à l'autre. Fait intéressant, bien que ces épicentres aient toujours montré des signes d’atrophie, ils ne constituaient pas nécessairement les zones de plus grande perte de volume. Au sein de chaque maladie, les modèles d’atrophie différaient considérablement d’une personne à l’autre.

Les scientifiques dirigés par Jesse Brown et Bill Seeley, de l’Université de Californie à San Francisco, ont utilisé une seule IRM structurelle chez 72 patients atteints de démence fronto-temporale pour prédire quelles régions de leur cerveau succomberaient à la maladie.

Ils ont été capable de déterminer l'origine probable de la maladie - son épicentre - et ont utilisé des cartes de connectivité fonctionnelle pour extrapoler les régions susceptibles de s'atrophier par la suite, au cours de l'évolution de la maladie. Leurs prévisions semblent en effet bien corrélées avec la perte de volume cérébral au cours des années suivantes. les auteurs suggèrent que cette méthode fournit un biomarqueur individualisé pour les essais cliniques et aussi pour faire un diagnostic précoce. Brown et ses collègues montrent que la biologie clé en jeu dans les maladies neurodégénératives implique la physiologie fonctionnelle de réseaux cérébraux à grande échelle qui soutiennent le fonctionnement mental. Comme dans les études précédentes, les méthodes utilisées dans cette étude ne permettent pas de différencier les modèles concurrents de neurodégénérescence en réseau.

Pour identifier les régions susceptibles de s’atrophier à mesure que la maladie progressait, les chercheurs ont élaboré un modèle de prévision prenant en compte trois facteurs: le lien fonctionnel d’une région à l’épicentre, le rétrécissement de ses voisins les plus proches et la perte de volume de référence. À partir de là, les chercheurs ont déterminé les schémas probables d’atrophie de 42 patients volontaires de bvFTD et de 30 patients atteints de svPPA. Ces participants ont ensuite effectué en moyenne trois autres analyses séparées de six à 14 mois, et les chercheurs ont comparé les résultats attendus à la perte réelle.

Deux aspects de l’étude sont particulièrement remarquables. Le premier est l'idée d'un modèle de prédiction personnalisé de l'atrophie longitudinale du cerveau, basé sur l'hypothèse de propagation trans-neuronale. La seconde est l'introduction d'un concept appelé «risque nodal», qui est une mesure du risque régional de l'atrophie future basée sur le degré d'atrophie de base dans les régions hautement fonctionnellement connectées. Comparée aux approches précédentes au niveau du groupe, une métrique individualisée du taux et de la directionnalité de l'atrophie cérébrale imminente a d'importantes ramifications potentielles pour la pratique clinique et les essais cliniques. Par exemple, l’atrophie cérébrale étant intimement liée à la progression clinique de la maladie, cette méthode basée sur la connectivité peut s’avérer utile pour le pronostic de diverses maladies neurodégénératives. En outre, les groupes placebo et traitement pourraient être soigneusement comparés aux taux d'atrophie attendus au cours des essais cliniques. De plus, l’identification d’un groupe de «progresseurs rapides» peut permettre un dépistage plus efficace des candidats-médicaments (c'est-à-dire une durée plus courte et moins de personnes).

Les chercheurs ont constaté que le taux de perte de volume différait selon les régions du cerveau. Pour la plupart, ces modèles d’atrophie s’apparentaient assez bien, avec un coefficient de corrélation de 0,65. Pour 16 patients, dont 13 avec bvFTD, le modèle n'a pas permis de prédire la perte de volume, avec un coefficient de corrélation moyen de -0,04. La plupart de ces patients avaient une atrophie initiale limitée et un épicentre confus. La plus forte contraction s’est produite non pas chez les épicentres eux-mêmes, mais chez leurs voisins de premier degré. Peut-être que l'épicentre avait déjà dégénéré autant qu'il le ferait, alors que les voisins du premier degré commençaient tout juste à commencer, ont psupposé les auteurs. "Cela a des implications fondamentales pour les essais cliniques qui utiliseraient des index dérivés de l'imagerie comme résultat", a écrit Bejanin. "Les meilleures régions pour évaluer l'effet des médicaments modificateurs de la maladie ne devraient pas être celles qui sont principalement visées par la maladie, ni les plus atrophiées, mais celles qui sont le plus connectées à ces régions."

La méthode nécessite des informations importantes sur le schéma neurodégénératif émergent, ce qui peut entraver l'application aux premiers stades de la maladie. Elle n’est pas encore suffisamment raffiné pour pouvoir être utilisé dans les essais cliniques. Dans cette étude, les données regroupées sur le connectome fonctionnel d’un groupe de personnes en bonne santé étaient utilisées pour prédire la connectivité, mais que l’utilisation du connectome propre à un patient améliorerait probablement les prévisions. Avec une meilleure précision, ce modèle pourrait fournir un indicateur de validation de principe pour les essais cliniques de stade précoce à intermédiaire. Par exemple, si une thérapie entraîne moins d'atrophie que prévu, elle pourrait encourager les parties prenantes à procéder à un essai de confirmation.

Cepeandant, bien qu’elle soit fortement corrélée, l’atrophie n’est pas équivalente à la pathologie sous-jacente. Ainsi, certains des effets directs de la pathologie sur la cognition et/ou le comportement (c’est-à-dire sans médiation par une atrophie) peuvent ne pas être capturés.

un objectif plus lointain est de prédire suffisamment l'atrophie pour prévnir les patients sur les symptômes auxquels ils peuvent s'attendre à l'avenir. Ce modèle pourrait être utile dans d’autres maladies neurodégénératives, y compris la maladie d’Alzheimer, bien que la double protéinopathie de l’Aβ et de la protéine Tau rende probablement la situation plus compliquée.

Publicité


Ce livre retrace les principales réalisations de la recherche sur la SLA au cours des 30 dernières années. Il présente les médicaments en cours d’essai clinique ainsi que les recherches en cours sur les futurs traitements susceptibles d’ici quelques années, d’arrêter la maladie et de fournir un traitement complet en une décennie ou deux.

An inhibitor of RPK1 has been tested for safety in healthy people

Why take an interest in RPK1?

Serine / threonine protein kinase 1 (RIPK1) interacting with receptors is an intracellular protein involved in the regulation of inflammation and cell death. RIPK1 is activated in response to several inflammatory stimuli, including tumor necrosis factor alpha (TNF-α) signaling by the TNF 1 receptor. When activated, RIPK1 elicits multiple cellular responses, including cytokine release, microglial activation, and necroptosis, a regulated form of cell death.

The early role of RIPK1 in this signaling cascade led to the hypothesis that inhibition of RIPK1 signaling could be beneficial in diseases characterized by excess cell death and inflammation such as amyotrophic lateral sclerosis (ALS).

Indeed, inhibition of RIPK1 activity has been shown to protect against necroptotic cell death in vitro over a range of cell death models (see below).

In animal models of diseases ranging from ulcerative colitis to multiple sclerosis, inhibition of this pathway protects against pathology and cell death. These non-clinical findings, coupled with observations of increased activity of RIPK1 in human diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and multiple sclerosis, suggest that inhibition of RIPK1 could be beneficial in many different chronic diseases.

What problems are there with RPK1 inhibitors?

Inhibitors of RIPK1 are currently being evaluated as treatments for systemic inflammatory diseases, including inflammatory bowel disease and psoriasis, but there is no evidence that previously studied inhibitors in humans enter the system. central nervous system (CNS). To evaluate the potential for inhibition of RIPK1 as a therapeutic for chronic neurodegenerative diseases, it is necessary to study the pharmacokinetics (PK), pharmacodynamics (PD) and safety profile of a molecule capable of entering in the CNS at effective concentrations.

DNL104 is a selective inhibitor of CNS penetrable RIPK1 activity developed by Denali Therapeutics as a potential treatment for neurodegenerative disease. Denali, a CNS biotechnology company, is made up of veterans from Genentech, and joined the RIK1 program in 2016 with the acquisition of Incro Pharmaceuticals. Sanofi paid $ 125 million (€ 110 million) by the end of 2018 for participation in two developing RIPK1 inhibitors in Denali. The agreement covers small molecules designed to treat several neurodegenerative and systemic inflammatory diseases.

What is the current knowledge on the subject?

Inhibition of phosphorylation of RIP K 1 shows protection against pathology and inflammation in vitro and in animals, induced by various challenges, including in animal models with CNS disease (AD and ALS).

What question did this study address?

The safety, tolerability, pharmacokinetic, and pharmacodynamic effects of the CNS-penetrating RIP1 kinase inhibitor D NL104 were tested in randomized, placebo-controlled, increasing dose placebo-controlled trials.

What does this study add to our knowledge?

The results show that DNL104 inhibits phosphorylation of RIPK1 in healthy healthy volunteers with no effect on central nervous system safety, but liver toxicity issues have been raised in the multiple-dose-escalation study, in which 37.5 % of subjects (6 subjects) developed high liver function tests. related to the drug, of which 50% (3 subjects) were classified in the category inducing a drug-induced liver injury (DILI).

Why focus on necroptosis?

In 2014, we knew for a long time that the origin of ALS was not in motor neurons, but in other cells. But 8 years after the discovery of TDP-43 and 3 years after the discovery of C9orf72, most knowledge about the mechanisms of motor neuron degeneration in ALS still came from studies on SOD1-type mouse models. A clear conclusion from these studies is that non-neuronal cells play a critical role in the neurodegeneration related to SOD1 mutations. Indeed, the presence of healthy glial cells significantly delayed the onset of motor neuron degeneration, increasing the life without disease by 50%.

Since the work of the Jean-Pierre Julien Group in 2005, it has been suggested several times that interneurons, myelinating Schwann cells of the peripheral nervous system and endothelial cells of the vascular system could be at the origin of ALS. But other studies have suggested instead that astrocytes could cause spontaneous degeneration of motor neurons. For example, in 2003, researchers led by Don Cleveland of the University of California at San Diego involved astrocytes in motor neuron death, showing that administering SOD1 to these non-neuronal cells still resulted in motor neuron disease.

Agnostic research on the cause of ALS

Usually when a scientist decides to set up an experiment, he wants to test a hypothesis. The hypothesis itself is based on a model of the disease. A new trend in biology is to do research without having a preconceived idea (the model of the disease). It is believed that this is a difficult way to achieve results that could not have been achieved by conventional procedures.

In order to determine whether astrocytes from sALS patients can kill motoneurons independently without being exposed to SOD1, the Przedborski group decides to study the mix of different types of cells after they have been exposed to ALS, without prejudging of what causes ALS. For that they decide to design "their" in-vitro model of ALS. This well-cited article (100 times), however, contradicts many other studies.

Diane Re and Virginia Le Verche isolate astrocytes derived from post mortem motor cortex and spinal cord tissue from six SALS patients and 15 controls. They realize that after one month of culture, astrocytes have dominated other cultures. The researchers then mixed these astrocytes with motor neurons derived from human embryonic stem cells. While neurons thrived when co-occurring with non-sALS control astrocytes, their number began to fall after only four days of culturing with sALS astrocytes. All of this clearly shows that astrocytes from SALS patients specifically kill motor neurons, unlike control astrocytes.

However, other types of neurons than the motoneurons were resistant to the deleterious signals delivered by sALS astrocytes, and the fibroblasts of sALS patients also did not destroy the motoneurons, indicating that the toxic relationship was astrocyte-specific. and SALS motor neurons. To determine the role of SOD1 the researchers inhibited the expression of this protein in astrocytes using four small hairpin RNAs. The treatment failed to protect the motor neurons. The decrease in TDP-43 expression in astrocytes did not save them either.

Controversial research

These results contradict a study conducted by a team of Brian Kaspar, who found that astrocytes derived from neural progenitor cells taken from sALS patients needed SOD1 to destroy motor neurons, even though sALS patients showed no evidence of mutation of this gene (Haidet-Phillips et al., 2011). But in 2014, in the same issue as the publication of the Przedborski group, the Haidet-Phillips group publishes an article1 that is very similar to that of the Przedborski group, except that it incriminates NF-κB and therefore a mechanism for apoptosis rather than necroptosis, but in any case SOD1 is no longer supposed to be the primary cause of ALS.

For this team the inactivation of SOD1 in human astrocytes of patients with SALS does not preserve the motor neurons. How ALS astrocytes become toxic remains completely obscure. No known ALS-related mutations were identified in their samples and yet the toxic phenotype persisted even after several passages of adult astrocytes in culture. The authors suggest that necroptosis is the dominant mode of cell death in their in vitro model of sALS.

In 2019 it is difficult to say who is right between all these contradictory studies. Apoptosis and necroptosis are major mechanisms of cell death that usually result in opposite immune responses. Apoptotic death usually leads to immunologically silent responses, while death by necroptosis releases molecules that promote inflammation, a process called necrosis.

Advertisement


This book retraces the main achievements of ALS research over the last 30 years, presents the drugs under clinical trial, as well as ongoing research on future treatments likely to be able stop the disease in a few years and to provide a complete cure in a decade or two.

Un inhibiteur de RPK1 a été testé pour son innocuité chez des personnes saines

Pourquoi s’intéresser à RPK1?

La sérine/thréonine protéine kinase 1 (RIPK1) interagissant avec les récepteurs est une protéine intracellulaire impliquée dans la régulation de l’inflammation et de la mort cellulaire. RIPK1 est activé en réponse à plusieurs stimuli inflammatoires, notamment la signalisation du facteur de nécrose tumorale alpha (TNF-α) par le récepteur du TNF 1. Lorsqu’il est activé, RIPK1 déclenche de multiples réponses cellulaires, notamment la libération de cytokines, l’activation microgliale et la nécroptose, forme régulée de la mort cellulaire.

Le rôle précoce de RIPK1 dans cette cascade de signalisation a conduit à l’hypothèse que l’inhibition de la signalisation de RIPK1 pourrait être bénéfique dans les maladies caractérisées par un excès de mort cellulaire et une inflammation comme la sclérose latérale amyotrophique (SLA).

En effet, il a été démontré que l’inhibition de l’activité de RIPK1 protège contre la mort cellulaire nécroptotique in vitro sur une gamme de modèles de mort cellulaire (voir plus loin).

Dans les modèles animaux de maladies allant de la colite ulcéreuse à la sclérose en plaques, l’inhibition de cette voie protège de la pathologie et de la mort cellulaire. Ces découvertes non cliniques, associées aux observations de l’activité accrue de RIPK1 dans des maladies humaines telles que la sclérose latérale amyotrophique (SLA), la maladie d’Alzheimer (AD) et la sclérose en plaques, suggèrent que l’inhibition de RIPK1 pourrait être bénéfique dans de nombreuses maladies chroniques différentes.

Quels traitements problèmes il y a-t-il avec les inhibiteurs de RPK1?

Les inhibiteurs de RIPK1 sont actuellement en cours d’évaluation en tant que traitements des maladies inflammatoires systémiques, y compris les maladies inflammatoires de l’intestin et le psoriasis, mais rien n’indique que les inhibiteurs précédemment étudiés chez l’homme pénètrent dans le système nerveux central (SNC). Pour évaluer le potentiel de l’inhibition de RIPK1 en tant que thérapeutique pour les maladies neurodégénératives chroniques, il est nécessaire d’étudier la pharmacocinétique (PK), la pharmacodynamique (PD) et le profil de sécurité d’une molécule capable d’entrer dans le SNC à des concentrations efficaces.

DNL104 est un inhibiteur sélectif de l’activité de RIPK1 pénétrable dans le SNC, développé par Denali Therapeutics en tant que traitement potentiel de la maladie neurodégénérative. Denali, une société de biotechnologie spécialisée dans le SNC, est composée de vétérans de Genentech, et a adhéré au programme RIK1 en 2016 grâce à l’acquisition d’Incro Pharmaceuticals. Sanofi a déboursé 125 millions de dollars (110 millions d’euros) en fin 2018 pour une participation dans deux inhibiteurs de RIPK1 en développement à Denali. L’accord couvre de petites molécules conçues pour traiter plusieurs maladies inflammatoires neurodégénératives et systémiques.

Quelles sont les connaissances actuelles sur le sujet?

L’inhibition de la phosphorylation de RIP K 1 montre une protection contre la pathologie et l’inflammation in vitro et chez l’animal, induite par divers défis, y compris dans les modèles animaux atteints de maladie du SNC (AD et ALS).

Quelle question cette étude a-t-elle abordée?

Les effets sur l’innocuité, la tolérabilité, la pharmacocinétique et la pharmacodynamique de l’inhibiteur D NL104 du RIP1 kinase pénétrant dans le SNC ont été testés dans le cadre d’essais randomisés contrôlés par placebo à doses croissantes et croissantes.

Qu’est-ce que cette étude ajoute à nos connaissances?

Les résultats montrent que DNL104 inhibe la phosphorylation de RIPK1 chez des volontaires sains en bonne santé sans effet sur la sécurité du système nerveux central, mais des problèmes de toxicité hépatique ont été soulevés dans l’étude à doses croissantes multiples, dans laquelle 37,5% des sujets (6 sujets) ont développé des tests de la fonction hépatique élevés. liés au médicament, dont 50% (3 sujets) ont été classés dans la catégorie induisant une lésion du foie induite par le médicament (DILI).

Pourquoi s’intéresser à la nécroptose?

En 2014, on savait déjà depuis longtemps que l’origine de la SLA n’était pas dans les neurones moteurs, mais dans d’autres cellules. Mais 8 ans après la découverte de TDP-43 et 3 ans après la découverte de C9orf72, la plupart des connaissances sur les mécanismes de la dégénérescence de motoneurone dans la SLA provenaient toujours d’études sur les modèles de souris de type SOD1. Une conclusion claire de ces études est que les cellules non neuronales jouent un rôle critique dans la neurodégénérescence liée aux mutations de SOD1. En effet, la présence de cellules gliales saines retardait considérablement l’apparition de la dégénérescence des motoneurones, augmentant de 50 % la durée de vie sans maladie.

Depuis les travaux du groupe Jean-Pierre Julien en 2005, il a été suggéré à plusieurs reprises que les interneurones, les cellules de Schwann myélinisantes du système nerveux périphérique et les cellules endothéliales du système vasculaire pouvaient être à l’origine de la SLA. Mais d’autres études ont suggéré au contraire que les astrocytes pouvaient provoquer une dégénérescence spontanée des motoneurones. Par exemple en 2003, des chercheurs dirigés par Don Cleveland de l’Université de Californie à San Diego ont impliqué les astrocytes dans la mort des motoneurones, en montrant qu’administrer SOD1 à ces cellules non neuronales entraînait toujours une maladie du motoneurone.

Une recherche agnostique sur la cause de la SLA

D’habitude quand un scientifique décide de monter une expérience, c’est qu’il veut tester une hypothèse. L’hypothèse, elle-même repose sur un modèle de la maladie. Une nouvelle tendance en biologie est de faire de la recherche, sans avoir une idée préconçue (le modèle de la maladie). On estime que c’est une façon, certes difficile, d’obtenir des résultats que l’on n’aurait pas pu obtenir en procédant classiquement.

Afin de déterminer si les astrocytes de patients atteints de sALS peuvent tuer les motoneurones indépendamment sans être exposés à SOD1, le groupe de Przedborski décide d’étudier la mixité de différents types de cellules après qu’elles eurent été exposées à la SLA, sans préjuger de ce qui cause la SLA. Pour cela ils décident de concevoir « leur » modèle in-vitro de la SLA. Cet article qui est bien cité (100 fois) contredit cependant nombre d’autres études.

Diane Re et Virginia Le Verche isolent des astrocytes issus de cortex moteur post mortem et de tissu de la moelle épinière de six patients sALS et de 15 témoins. Elles se rendent compte qu’après un mois de culture, que les astrocytes ont dominé les autres cultures. Les chercheurs ont ensuite mélangé ces astrocytes à des motoneurones dérivés de cellules souches embryonnaires humaines. Alors que les neurones prospéraient lorsqu’ils cohabitaient avec des astrocytes de témoins non-sALS, leur nombre a commencé à chuter après seulement quatre jours de culture avec des astrocytes sALS. Tout cela montre clairement que les astrocytes de patients atteints de SALS tuent spécifiquement les motoneurones, contrairement aux astrocytes de contrôle.

D’autres types de neurones que les motoneurones étaient cependant résistants aux signaux délétères délivrés par les astrocytes sALS, et par ailleurs les fibroblastes de patients atteints de sALS ne détruisaient pas non plus les motoneurones, ce qui indiquait que la relation toxique était spécifique aux astrocytes et aux motoneurones sALS. Pour déterminer le rôle de SOD1 les chercheurs ont inhibé l’expression de cette protéine dans les astrocytes en utilisant quatre petits ARN en épingle à cheveux. Le traitement n’a pas réussi à protéger les motoneurones. La diminution de l’expression de TDP-43 dans les astrocytes, ne les a pas sauvés non plus.

Une recherche controversée

Ces résultats contredisent une étude menée par une équipe de Brian Kaspar, qui a révélé que les astrocytes dérivés de cellules progénitrices neurales prélevées chez des patients atteints de sALS avaient besoin de SOD1 pour détruire les motoneurones, même si les patients atteints de sALS ne présentaient aucune mutation de ce gène (Haidet-Phillips et al. , 2011). Mais en 2014, dans le même numéro que la publication du groupe de Przedborski, le groupe de Haidet-Phillips publie un article1 qui est très similaire à celui du groupe de Przedborski, sauf qu’il incrimine NF-κB et donc un mécanisme d’apoptose plutôt que de nécroptose, mais en tout cas SOD1 n’est plus supposé être la cause première de la SLA.

Pour cette équipe-ci l’inactivation de SOD1 dans les astrocytes humains de patients atteints de SALS ne permet pas de préserver les motoneurones. Comment les astrocytes de SLA deviennent-ils toxiques reste complètement obscur. Aucune mutation connue liée à la SLA n’a été identifiée dans leurs échantillons et pourtant le phénotype toxique a persisté même après plusieurs passages des astrocytes adultes en culture. Les auteurs suggèrent que la nécroptose est le mode dominant de la mort cellulaire dans leur modèle in vitro de sALS.

En 2019 il est difficile de dire qui a raison entre toutes ces études contradictoires. L’apoptose et la nécroptose sont des mécanismes majeurs de la mort cellulaire qui entraînent généralement des réponses immunitaires opposées. La mort par apoptose conduit habituellement à des réponses immunologiquement silencieuses, tandis que la mort par nécroptose libère des molécules qui favorisent l’inflammation, un processus appelé nécro-inflammation.

Publicité


Ce livre retrace les principales réalisations de la recherche sur la SLA au cours des 30 dernières années. Il présente les médicaments en cours d’essai clinique ainsi que les recherches en cours sur les futurs traitements susceptibles d’ici quelques années, d’arrêter la maladie et de fournir un traitement complet en une décennie ou deux.

Please, to help us continue to provide valuable information: